Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability

2019 ◽  
Vol 141 (13) ◽  
pp. 5518-5534 ◽  
Author(s):  
Ioannis Spanopoulos ◽  
Ido Hadar ◽  
Weijun Ke ◽  
Qing Tu ◽  
Michelle Chen ◽  
...  
Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.


2018 ◽  
Vol 74 (7) ◽  
pp. III_493-III_502
Author(s):  
Hajime SUGITA ◽  
Terumi OGUMA ◽  
Ming ZHANG ◽  
Junko HARA ◽  
Yoshishige KAWABE

RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38424-38436
Author(s):  
Anna Baranowska-Korczyc ◽  
Ewelina Mackiewicz ◽  
Katarzyna Ranoszek-Soliwoda ◽  
Jarosław Grobelny ◽  
Grzegorz Celichowski

This study describes a new method for passivating Ag nanoparticles (AgNPs) with SnO2 layer and their further treatment by microwave irradiation.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5659-5697 ◽  
Author(s):  
Namsheer K ◽  
Chandra Sekhar Rout

Conducting polymers are extensively studied due to their outstanding properties, including tunable electrical property, optical and high mechanical properties, easy synthesis and effortless fabrication and high environmental stability over conventional inorganic materials.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2731-2761 ◽  
Author(s):  
Lin Huang ◽  
Yusheng Zhang ◽  
Xueming Liu

AbstractCarbon nanotube (CNT) can work as excellent saturable absorber (SA) due to its advantages of fast recovery, low saturation intensity, polarization insensitivity, deep modulation depth, broad operation bandwidth, outstanding environmental stability, and affordable fabrication. Its successful application as SA has promoted the development of scientific research and practical application of mode-locked fiber lasers. Besides, mode-locked fiber laser constitutes an ideal platform for investigating soliton dynamics which exhibit profound nonlinear optical dynamics and excitation ubiquitous in many fields. Up to now, a variety of soliton dynamics have been observed. Among these researches, CNT-SA is a key component that suppresses the environmental perturbation and optimizes the laser system to reveal the true highly stochastic and non-repetitive unstable phenomena of the initial self-starting lasing process. This review is intended to provide an up-to-date introduction to the development of CNT-SA based ultrafast fiber lasers, with emphasis on recent progress in real-time buildup dynamics of solitons in CNT-SA mode-locked fiber lasers. It is anticipated that study of dynamics of solitons can not only further reveal the physical nature of solitons, but also optimize the performance of ultrafast fiber lasers and eventually expand their applications in different fields.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luis Lanzetta ◽  
Thomas Webb ◽  
Nourdine Zibouche ◽  
Xinxing Liang ◽  
Dong Ding ◽  
...  

AbstractTin perovskites have emerged as promising alternatives to toxic lead perovskites in next-generation photovoltaics, but their poor environmental stability remains an obstacle towards more competitive performances. Therefore, a full understanding of their decomposition processes is needed to address these stability issues. Herein, we elucidate the degradation mechanism of 2D/3D tin perovskite films based on (PEA)0.2(FA)0.8SnI3 (where PEA is phenylethylammonium and FA is formamidinium). We show that SnI4, a product of the oxygen-induced degradation of tin perovskite, quickly evolves into iodine via the combined action of moisture and oxygen. We identify iodine as a highly aggressive species that can further oxidise the perovskite to more SnI4, establishing a cyclic degradation mechanism. Perovskite stability is then observed to strongly depend on the hole transport layer chosen as the substrate, which is exploited to tackle film degradation. These key insights will enable the future design and optimisation of stable tin-based perovskite optoelectronics.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.


Sign in / Sign up

Export Citation Format

Share Document