Relation between the Endogenous Antioxidant System and the Quality of Extra Virgin Olive Oil under Accelerated Storage Conditions

2005 ◽  
Vol 53 (6) ◽  
pp. 2103-2110 ◽  
Author(s):  
Karel Hrncirik ◽  
Sonja Fritsche
Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1945
Author(s):  
Soraya Mousavi ◽  
Roberto Mariotti ◽  
Vitale Stanzione ◽  
Saverio Pandolfi ◽  
Valerio Mastio ◽  
...  

The extent and conditions of storage may affect the stability and quality of extra virgin olive oil (EVOO). This study aimed at evaluating the effects of different storage conditions (ambient, 4 °C and −18 °C temperatures, and argon headspace) on three EVOOs (low, medium, and high phenols) over 18 and 36 months, analyzing the main metabolites at six time points. The results showed that low temperatures are able to maintain all three EVOOs within the legal limits established by the current EU regulations for most compounds up to 36 months. Oleocanthal, squalene, and total phenols were affected by storage temperatures more than other compounds and degradation of squalene and α-tocopherol was inhibited only by low temperatures. The best temperature for 3-year conservation was 4 °C, but −18 °C represented the optimum temperature to preserve the organoleptic properties. The present study provided new insights that should guide EVOO manufacturers and traders to apply the most efficient storage methods to maintain the characteristics of the freshly extracted oils for a long conservation time.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2161
Author(s):  
Leeanny Caipo ◽  
Ana Sandoval ◽  
Betsabet Sepúlveda ◽  
Edwar Fuentes ◽  
Rodrigo Valenzuela ◽  
...  

Commercialization of extra virgin olive oil (EVOO) requires a best before date recommended at up to 24 months after bottling, stored under specific conditions. Thus, it is expected that the product retains its chemical properties and preserves its ‘extra virgin’ category. However, inadequate storage conditions could alter the properties of EVOO. In this study, Arbequina EVOO was exposed to five storage conditions for up to one year to study the effects on the quality of the oil and the compounds responsible for flavor. Every 15 or 30 days, samples from each storage condition were analyzed, determining physicochemical parameters, the profiles of phenols, volatile compounds, α-tocopherol, and antioxidant capacity. Principal component analysis was utilized to better elucidate the relationships between the composition of EVOOs and the storage conditions. EVOOs stored at −23 and 23 °C in darkness and 23 °C with light, differed from the oils stored at 30 and 40 °C in darkness. The former was associated with a higher quantity of non-oxidized phenolic compounds and the latter with higher elenolic acid, oxidized oleuropein, and ligstroside derivatives, which also increased with storage time. (E)-2-nonenal (detected at trace levels in fresh oil) was selected as a marker of the degradation of Arbequina EVOO quality over time, with significant linear regressions identified for the storage conditions at 30 and 40 °C. Therefore, early oxidation in EVOO could be monitored by measuring (E)-2-nonenal levels.


Author(s):  
Leeanny Caipo ◽  
Ana Sandoval ◽  
Betsabet Sepúlveda ◽  
Edwar Fuentes ◽  
Rodrigo Valenzuela ◽  
...  

Abstract: Commercialization of extra virgin olive oil (EVOO) requires a best before date recom-mended at up to 24 months after bottling, stored under specific conditions. Thus, it is expected that the product retains its chemical properties and preserves its ‘extra virgin’ category. However, in-adequate storage conditions could alter the properties of EVOO. In this study, Arbequina EVOO was exposed to five storage conditions for up to one year to study the effects on the quality of the oil and the compounds responsible for flavor. Every 15 or 30 days, samples from each storage condition were analyzed determining physicochemical parameters, the profiles of phenols, volatile compounds, α-tocopherol and antioxidant capacity. Principal component analysis was utilized to better elucidate the relationships between composition of EVOOs and the storage conditions. EVOOs stored at -23 and 23 °C in darkness and 23 °C with light, differed from the oils stored at 30 and 40 °C in darkness. The former were associated with higher quantity of non-oxidized phenolic compounds and the latter with higher elenolic acid, oxidized oleuropein and ligstroside derivatives, which also increased with storage time. E-2-Nonenal (detected at trace levels in fresh oil) was selected as a marker of the degradation of Arbequina EVOO quality over time, with significant linear regressions identified for the storage conditions at 30 and 40 °C. Therefore, early oxidation in EVOO could be monitored by measuring E2-Nonenal levels.


2021 ◽  
Vol 141 ◽  
pp. 322-329
Author(s):  
Jihed Faghim ◽  
Mbarka Ben Mohamed ◽  
Mohamed Bagues ◽  
Kamel Nagaz ◽  
Tebra Triki ◽  
...  

2006 ◽  
Vol 29 (2) ◽  
pp. 139-150 ◽  
Author(s):  
VINCENZO VACCA ◽  
ALESSANDRA DEL CARO ◽  
MARCO POIANA ◽  
ANTONIO PIGA

2019 ◽  
Vol 244 ◽  
pp. 1-10 ◽  
Author(s):  
Basheer M. Iqdiam ◽  
Manal O. Abuagela ◽  
Sara M. Marshall ◽  
Yavuz Yagiz ◽  
Renee Goodrich-Schneider ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 38
Author(s):  
Giuseppe Cinelli ◽  
Martina Cofelice ◽  
Francesco Venditti

This review traces the current knowledge on the effects of various factors and phenomena that occur at interface, and the role of dispersed phase on the physicochemical, sensorial and nutritional characteristics of veiled extra virgin olive oil (VVOO). Since 1994 there have been numerous articles in the literature regarding the peculiar characteristic of unfiltered olive oil, so-called veiled or cloud virgin olive oil. It is a colloidal system (emulsion–sol), where the continuous lipidic phase dispreads mini droplets of milling water, fragments of cells and biotic fraction obtained from oil processing. During storage, the dispersed phase collapses and determines the quality of the virgin olive oil (VOO). The observed phenomena lead to worsening the quality of the product by causing defects such as oxidation of phenols, triacylglycerols hydrolysis and off-flavor formation. The addition of bioactive compounds, such as vitamins, on product based on VVOO, must take into account the eventual synergistic effect of individual substances. The role of the interphase is crucial to the synergic activity of bioactive molecules in improving oxidative stability, sensorial and health characteristics of VVOO.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Claudia Guillaume ◽  
Leandro Ravetti

Extra virgin olive oil shelf-life could be defined as the length of time under normal storage conditions within which no off-flavours or defects are developed and quality parameters such as peroxide value and specific absorbance are retained within accepted limits for this commercial category. Prediction of shelf-life is a desirable goal in the food industry. Even when extra virgin olive oil shelf-life should be one of the most important quality markers for extra virgin olive oil, it is not recognised as a legal parameter in most regulations and standards around the world. The proposed empirical formula to be evaluated in the present study is based on common quality tests with known and predictable result changes over time and influenced by different aspects of extra virgin olive oil with a meaningful influence over its shelf-life. The basic quality tests considered in the formula are Rancimat® or induction time (IND); 1,2-diacylglycerols (DAGs); pyropheophytin a (PPP); and free fatty acids (FFA). This paper reports research into the actual shelf-life of commercially packaged extra virgin olive oils versus the predicted shelf-life of those oils determined by analysing the expected deterioration curves for the three basic quality tests detailed above. Based on the proposed model, shelf-life is predicted by choosing the lowest predicted shelf-life of any of those three tests.


Sign in / Sign up

Export Citation Format

Share Document