UV−Visible Spectroscopic Investigation of the 8,8-Methylmethine Catechin-malvidin 3-Glucoside Pigments in Aqueous Solution:  Structural Transformations and Molecular Complexation with Chlorogenic Acid

2006 ◽  
Vol 54 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Montserrat Dueñas ◽  
Erika Salas ◽  
Véronique Cheynier ◽  
Olivier Dangles ◽  
Hélène Fulcrand
Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Minji Lee ◽  
Donghwan Choe ◽  
Soyoung Park ◽  
Hyeongjin Kim ◽  
Soomin Jeong ◽  
...  

A novel thiosemicarbazide-based fluorescent sensor (AFC) was developed. It was successfully applied to detect hypochlorite (ClO−) with fluorescence quenching in bis-tris buffer. The limit of detection of AFC for ClO− was analyzed to be 58.7 μM. Importantly, AFC could be employed as an efficient and practical fluorescent sensor for ClO− in water sample and zebrafish. Moreover, AFC showed a marked selectivity to ClO− over varied competitive analytes with reactive oxygen species. The detection process of AFC to ClO− was illustrated by UV–visible and fluorescent spectroscopy and electrospray ionization–mass spectrometry (ESI–MS).


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1737 ◽  
Author(s):  
Marisela Martinez-Quiroz ◽  
Xiomara E. Aguilar-Martinez ◽  
Mercedes T. Oropeza-Guzman ◽  
Ricardo Valdez ◽  
Eduardo A. Lopez-Maldonado

This paper presents the synthesis and evaluation of physicochemical behavior of a new series of N-alkyl-bis-o-aminobenzamides (BOABs) in aqueous solution. The study was targeted to the complexing capacity of five metal ions (Fe2+, Cu2+, Cd2+, Hg2+ and Pb2+) of environmental concern as the medullar principle of a liquid phase sensor for its application in the determination of these metal ions due to its versatility of use. Molecular fluorescence, UV-visible and Zeta potential were measured for five BOABs and the effect of alkyl groups with different central chain length (n = 3, 4, 6, 8 and 10) on physicochemical performance determined. The results have shown that these derivatives present higher sensibility and selectivity for Cu2+ even in the presence of the other metal ions. An additional application test was done adding a pectin (0.1 wt %) solution to the BOAB-Cu+2 complex to obtain a precipitate (flocs) as a potential selective separation process of Cu from aqueous solution. The solid was then lyophilized and analyzed by SEM-EDS, the images showed spheric forms containing Cu+2 with diameter of approximately of 8 μm and 30 wt %.


2013 ◽  
Vol 873 ◽  
pp. 206-210
Author(s):  
Kai Li ◽  
Rao Fu ◽  
Qing Ran Gao ◽  
Ai Wei Tang ◽  
Ying Feng Wang

This paper continues our previous work on preparation of triangular silver nanoparticles. The method proceeds with reaction of silver nitrate with hydrazine hydrate in the presence of polyvinyl pyrrolidone in aqueous solution. Effects of the concentration of PVP on the morphologies of Ag NPs were systematically investigated. The obtained Ag NPs were characterized by transmission electron microscopy and UV-visible spectrophotometer. The results showed that, triangular Ag NPs with edge lengths in the range of 50-200 nm were obtained using PVP as protective agent with lower concentration. As the concentration of PVP increased, spherical Ag NPs with their sizes about 6.2 nm were prepared and triangular Ag NPs were not obtained. The formation mechanism of triangular Ag NPs has been studied. Ostwald ripening is the driving force on the conversion of spherical Ag NPs to triangular Ag NPs in the presence of PVP.


Author(s):  
Rusmidah Ali ◽  
Boon Siew Ooi

Dalam kajian ini, ZnO dan TiO2 digunakan sebagai fotomangkin dalam pendegradasian pewarna New Methylene Blue N (NMBN). Kadar fotodegradasi diukur menggunakan alat spektrofotometer UV-Vis. Dalam kajian ini, New Methylene Blue N menunjukkan nilai serapan pada λ = 590 nm dan λ = 286 nm. Lampu UV (λ = 354 nm) digunakan dalam proses fotodegradasi. Dalam proses degradasi menggunakan ZnO menunjukkan 81.42% NMBN terdegradasi pada λ = 590 nm dan 77.75% pada λ = 286 nm. Sebaliknya, degradasi menggunakan TiO2 adalah 25.68% pada λ = 590 nm dan 26.37% pada λ = 286 nm. Peratus degradasi New Methylene Blue N ialah 88.89% dan 68.94% pada masing-masing λ = 590 nm dan λ = 286 nm apabila ditambahkan dengan H2O2. Campuran ZnO dan TiO2 dalam nisbah 85: 15 (0.085 g; 0.015 g) merupakan campuran fotomangkin yang paling optimum iaitu dengan peratus degradasi NMBN sebanyak 96.97% dan 93.61% pada λ = 590 nm dan λ = 286 nm. Penambahan ion logam Cu2+ memberikan peratus degradasi tertinggi berbanding ion logam lain iaitu 83.83% pada λ = 590 nm. Penambahan ion logam Pb2+ memberikan peratus degradasi tertinggi pada λ = 286 nm iaitu 81.25% pewarna terdegradasi. Keadaan optimum dicapai pada pH 5.90, dengan peratus degradasi tertinggi iaitu 92.84% dan 89.30% pada masing-masing λ = 590 nm dan λ = 286 nm. Kata kunci: New Methylene Blue N; fotodegradasi; larutan; ZnO; TiO2 In this study, ZnO and TiO2 are used as photocatalyst to degrade the dye, New Methylene Blue N (NMBN). The photodegradation rate was measured using UV-Visible spectrophotometer. In this study, New Methylene Blue N showed absorption values at λ = 590 nm and λ = 286 nm. UV lamp (λ = 354 nm) is used in the photodegradation process. Results showed that ZnO is a better photocatalyst compared to TiO2. The degradation by ZnO showed that 81% of NMBN was degraded at λ = 590 nm and 77.75% at λ = 286 nm. In contratst, the degradation using TiO2 was 25.68% at λ = 590 nm and 26.37% at λ = 286 nm. The percent degradation of New Methylene Blue N is 88.89% and 68.94% at λ = 590 nm and λ = 286 nm respectively when H2O2 was added. A mixture of ZnO and TiO2 in the ratio of 85: 15 (0.085 g: 0.015 g) is the most optimum ratio for the mixed photocatalyst where the degradation percentage of NMBN are 96.97% and 93.61% at λ = 590 nm and λ = 286 nm. The addition of Cu2+ metal ion gave the highest percentage of degradation (83.83% at λ = 590 nm) compared to other metal ions. The addition of Pb2+ gave the highest percentage of degradation at λ = 286 nm with 81.25% degradation of the dye. The optimum condition was achieved at pH 5.90, which gave the highest percentage degradation, 92.84% and 89.30% at λ = 590 nm and λ = 286 nm respectively. Key words: New Methylene Blue N; photodegradation; aqueous; ZnO; TiO2


Author(s):  
Te-Fu L. Ho ◽  
James R. Bolton ◽  
Ewa Lipczynska-Kochany

AbstractA broadband method has been applied to determine the quantum yields for the photochemical removal of three common pollutants: phenol, 4-chlorophenol and N-nitrosodimethylamine (NDMA) in dilute aqueous solution. Flash photolysis (xenon flash lamps) was used to cause a significant amount of photolysis without photolyzing intermediates. The analysis of reactant depletion following a single flash was carried out by high- performance liquid chromatography (HPLC) or UV/visible absorption spectroscopy. The method for determining quantum-yields employed p-benzoquinone as an actinometer and was validated by determining the average (200-400 nm) quantum yield for the generation of hydroxyl radicals from the photolysis of hydrogen peroxide (0.90 ± 0.10) and the quantum yields for the photolysis of phenol (0.13 ± 0.02) and 4-chlorophenol (0.24 ± 0.04). The values determined agree very well with the literature ones obtained with monochromatic radiation. The quantum yield for the direct photolysis of NDMA was found to be 0.11 ± 0.03 at neutral pH and 0.27 ± 0.02 at pH 2-4. Under conditions where hydrogen peroxide is the principal absorber, the NDMA quantum yield is 0.32 ± 0.04, independent of pH in the range 2-8.


Sign in / Sign up

Export Citation Format

Share Document