Hypolipidemic Effect of Oils with Balanced Amounts of Fatty Acids Obtained by Blending and Interesterification of Coconut Oil with Rice Bran Oil or Sesame Oil

2007 ◽  
Vol 55 (25) ◽  
pp. 10461-10469 ◽  
Author(s):  
Malongil B. Reena ◽  
Belur R. Lokesh
Lipids ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1385-1395 ◽  
Author(s):  
Nayana Venugopal Yadav ◽  
Sadashivaiah ◽  
Breetha Ramaiyan ◽  
Pooja Acharya ◽  
Lokesh Belur ◽  
...  

Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 1025-1029
Author(s):  
Y.P. Sari ◽  
S. Raharjo ◽  
U. Santoso ◽  
Supriyadi

Rice bran oil (RBO) contains naturally occurring antioxidants such as carotenoids, tocopherol, and γ-oryzanol. The aim of this research was to formulate and evaluate the characteristics of nanoemulsion which was prepared using RBO containing naturally occurring antioxidants. The RBO-in-water nanoemulsion was prepared by the emulsion phase inversion method. The oil phase of the nanoemulsion was prepared by either virgin coconut oil (VCO) or palm oil (PO) combined with RBO with the ratio of 5:5; 4:6, 3:7, 2:8 and 0:10. Tween 80 was used as a surfactant. The surfactant to oil ratios was predetermined at 2.5:1.0 and 3.0:1.0. The aqueous phase (80% w/w) was titrated into an organic phase that consisted of Tween 80 and oil phase (approximately 20% w/w). Droplet size, zeta-potential and polydispersity index of the nanoemulsion were used as the main parameters. The results showed that the smallest droplet (<100 nm) of the nanoemulsion was obtained when the ratio of VCO: RBO at 3:7 and the ratio of PO: RBO at 4:6 with the surfactant to oil ratio (SOR) was 2.5. Nanoemulsion with a relatively small polydispersity index of 0.3 was achieved when the ratio of PO: RBO was 3:7 and SOR at 3. All of the freshly prepared RBO containing nanoemulsion have good stability with zetapotential values of < -30 mV. Nanoemulsions were stable against centrifugation at 2300 rpm for 15 mins, but they were not stable against heating at 105°C for 5 hrs. The RBO-inwater nanoemulsion could be successfully prepared by phase inversion method, by combining RBO with either VCO or PO at different ratios.


Food Research ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Irnawati ◽  
S. Riyanto ◽  
S. Martono ◽  
Abdul Rohman

Pumpkin seed oil (PSO), rice bran oil (RBO), sesame oil (SEO) are considered as functional oils due to its biological activities which are beneficial to human health, as a consequence, these oils had the higher price. This attracted unethical players to blend these oils with lower price oils, therefore, its authentication by analysis of purity levels of oils is very important. This study highlighted the potential application of FTIR spectroscopy and multivariate calibrations for analysis of PSO, RBO, and SEO in ternary mixtures. Individual FTIR spectra of studied oils as well as in ternary mixtures with certain compositions were scanned and pre-processed. Two multivariate calibrations of principle component regression (PCR) and partial least square regression (PLSR) were compared and used to build the prediction models at optimized FTIR spectra regions. The selection of multivariate calibrations, wavenumbers region, and FTIR spectra modes was based on the statistical parameters of highest R2 and lowest values of root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP). The results showed that PLSR using second derivative FTIR spectra at wavenumbers region of 3100-2750 and 1500-663 cm-1 was used to predict the levels of PSO in ternary mixtures with RBO and SEO with R2 > 0.99 in calibration and validation models along with RMSEC value of 0.0054% and RMSEP of 0.0179%. FTIR spectra using the second and first derivatives at wavenumbers of 3100-650 cm-1 were used for prediction of RBO and SEO in ternary mixture with PSO, respectively. It can be concluded that FTIR spectra combined with PLSR at certain wavenumbers region are accurate as indicated by high R2 values and precise as indicated by low values of RMSEC and RMSEP for analysis of PSO, RBO and SEO in ternary mixtures.


2015 ◽  
Vol 55 (9) ◽  
pp. 1123 ◽  
Author(s):  
R. S. Bhatt ◽  
A. Sahoo ◽  
A. K. Shinde ◽  
S. A. Karim

Twenty-four Malpura lambs (28 days old) were distributed into three equal groups (four each from either sexes). They were fed ad libitum on three experimental diets containing graded levels of calcium salt of fatty acids (source: rice bran oil; Ca-FA) at 0 (T1), 20 (T2) and 40 (T3) g per kg of concentrate and dry roughage (Prosopis cineraria leaves) up to 6 months of age along with suckling of mother till weaning (3 months). Effect of Ca-FA supplementation on liveweight gain, feed and nutrient intake was not observed during pre-weaning (28–90 days), which however increased (P < 0.05) in T3 during post-weaning (90–180 days). There was an increase in organic matter intake and digestibility as well as metabolisable energy intake in Ca-FA-supplemented groups. Rumen ammonia-N and ciliate protozoa population was increased (P < 0.05) in T2 and T3 with a positive shift in rumen fermentation (increased propionate and decreased acetate). Blood biochemical analysis revealed effect of treatment and age (P < 0.05) for free fatty acids and cholesterol concentration. Ca-FA supplementation improved (P < 0.05) dressing percentage both at 2% and 4% CA-FA inclusions levels with no change in fat yield and composition. It is concluded that supplementation of Ca-FA prepared from industrial-grade rice bran oil in growing lamb rations improved gain, organic matter intake and digestibility during the post-weaning period and a linear response to the level of supplementation recommends Ca-FA at 40 g/kg for improved lamb performance.


2012 ◽  
Vol 506 ◽  
pp. 461-464
Author(s):  
Somlak Kongmuang ◽  
D. Benjamala ◽  
W. Sangkarat ◽  
S. Buakwan

The cracked heel is one of popular problems occurred within thai society. In this study, stick-formed preparation (ST) was developed for portability and convenient to use. The formula contained natural oil, coconut oil (C) or rice bran oil (R), for moisturizing purpose. It was found that 10% R giving a suitable hardness for ST. After addition of 5% salicylic acid (SA) in ST, its hardness was decrease. The modification of formula was performed to obtain a suitable hardness. The ability of moisture retaining (MR) from ST and commercial cream (CO) were evaluated at 32°C for 24 hr with 50% relative humidity, the result was shown that ST giving better MR than CO (P=0.0028). After 4 cycles of freeze-thaw stability study, the ST hardness was not significantly change (P>0.05). However, the amount of SA in ST from dissolution with Paddle over Disc method using acetate buffer pH 5.5 at 32°C was lower than in CO.


2021 ◽  
Vol 18 (17) ◽  
Author(s):  
Benchamaporn PIMPA ◽  
Chakree THONGRAUNG ◽  
Pornpong SUTTHIRAK

This research aimed to study the effect of solvents, namely n-hexane and ethanol, on the yield of crude rice bran oil extraction. The effects of extraction temperatures of 50, 60, and 70 ºC and extraction times of 1, 3, 6, 12, and 24 h were investigated. Rice bran composition was determined. It was found that protein, lipid, moisture, fiber, ash, and carbohydrate content were 12.65±0.56, 16.32±0.81, 7.65±0.62, 10.25±0.64, 6.38±0.59, and 46.75 %, respectively. From the results, the rice bran oil yield from n-hexane extraction was significantly higher than ethanol extraction, with p < 0.05. The maximum rice bran oil obtained from n-hexane extraction was 16.23±0.34 %. The highest yield of rice bran oil was obtained from extraction temperature of 60 - 70 ºC for 12 - 24 h. After extraction by the optimum conditions at 60 ºC for 12 h, the rice bran oil was kept for 1, 2, 3, 4, and 8 weeks for investigation of its quality changes. It can be concluded that the optimum conditions for rice bran oil extraction was with using n-hexane as a solvent for extraction at a temperature of 60 ºC for 12 h. Storing oil for 0, 1, 2, 4, and 8 weeks resulted in the increase of free fatty acids (FFA) and peroxide value, whereas iodine value and saponification value were relatively constant. HIGHLIGHTS n-Hexane and ethanol effect the yield of crude rice bran oil extraction The rice bran oil yield from n-hexane extraction was higher than ethanol extraction The optimum conditions for rice bran oil extraction were with using n-hexane as a solvent for extraction at a temperature of 60 ºC for 12 h Storing rice bran oil for 8 weeks resulted in the increase of free fatty acids (FFA) and peroxide value, whereas iodine value and saponification value were relatively constant


Sign in / Sign up

Export Citation Format

Share Document