Potent in Vitro and in Vivo Inhibitors of Platelet Aggregation Based Upon the Arg-Gly-Asp Sequence of Fibrinogen. (Aminobenzamidino)succinyl (ABAS) Series of Orally Active Fibrinogen Receptor Antagonists

1995 ◽  
Vol 38 (13) ◽  
pp. 2378-2394 ◽  
Author(s):  
Jeffery A. Zablocki ◽  
Joseph G. Rico ◽  
Robert B. Garland ◽  
Thomas E. Rogers ◽  
Kenneth Williams ◽  
...  
1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


1993 ◽  
Vol 233 (2-3) ◽  
pp. 179-186 ◽  
Author(s):  
Hans-Rudolf Olpe ◽  
Martin W. Steinmann ◽  
Thomas Ferrat ◽  
Mario F. Pozza ◽  
Karin Greiner ◽  
...  

2007 ◽  
Vol 98 (07) ◽  
pp. 155-162 ◽  
Author(s):  
Jean-Marie Stassen ◽  
Henning Priepke ◽  
Uwe Joerg Ries ◽  
Norbert Hauel ◽  
Wolfgang Wienen

SummaryDabigatran is a reversible and selective, direct thrombin inhibitor (DTI) undergoing advanced clinical development as its orally active prodrug, dabigatran etexilate.This study set out to determine the molecular potency and anticoagulant efficacy of dabigatran and its prodrug dabigatran etexilate.This was achieved through enzyme inhibition and selectivity analyses, surface plasmon resonance studies, platelet aggregation, thrombin generation and clotting assays in vitro and ex vivo.These studies demonstrated that dabigatran selectively and reversibly inhibited human thrombin (Ki: 4.5 nM) as well as thrombin-induced platelet aggregation (IC50: 10 nM), while showing no inhibitory effect on other platelet-stimulating agents.Thrombin generation in platelet-poor plasma (PPP), measured as the endogenous thrombin potential (ETP) was inhibited concentration-dependently (IC50: 0.56 μM). Dabigatran demonstrated concentration-dependent anticoagulant effects in various species in vitro, doubling the activated partial thromboplastin time (aPTT), prothrombin time (PT) and ecarin clotting time (ECT) in human PPP at concentrations of 0.23, 0.83 and 0.18 μM, respectively. In vivo, dabigatran prolonged the aPTT dose-dependently after intravenous administration in rats (0.3, 1 and 3 mg/kg) and rhesus monkeys (0.15, 0.3 and 0.6 mg/kg). Dose- and time-dependent anticoagulant effects were observed with dabigatran etexilate administered orally to conscious rats (10, 20 and 50 mg/kg) or rhesus monkeys (1, 2.5 or 5 mg/kg), with maximum effects observed between 30 and 120 min after administration, respectively. These data suggest that dabigatran is a potent, selective thrombin inhibitor and an orally active anticoagulant as the prodrug, dabigatran etexilate.Footnote: Parts of this study were presented at the XVIII Congress of the International Society on Thrombosis and Haemostasis, Paris, July 2001. Thromb Haemost 2001; 86 (Suppl): Abstracts P755, P763.Institution where work was carried out: Boehringer Ingelheim Pharma GmbH &Co KG, 88397 Biberach, Germany.


1993 ◽  
Vol 70 (05) ◽  
pp. 838-847 ◽  
Author(s):  
Nigel S Cook ◽  
Oliver Bruttger ◽  
Charles Pally ◽  
Alex Hagenbach

SummaryIn vitro platelet aggregation studies in whole blood were used to define the species-specificity profile of two synthetic GP-IIb/IIIa antagonists, Ro 43-8857 and L-700,462. Aggregation of rhesus monkey platelets was inhibited with a similar potency to human platelets, whereas both compounds were poor antagonists in mini-pig, rabbit or hamster blood. Compared to human platelets, Ro 43-8857 was 2-3-fold less active as an inhibitor of dog and guinea-pig platelet aggregation, whereas L-700,462 was, respectively, 4- and 14-fold less active in these species.In vivo investigations with these two compounds were performed in anesthetized guinea-pigs and conscious dogs, with bleeding times measured on small mesenteric arteries or on the inner jowl respectively. Ex vivo ADP-induced whole blood platelet aggregation was completely inhibited in guinea-pigs by Ro 43-8857 following intravenous administration of 0.1 mg/kg and intraduodenal administration of 3 mg/kg, with a duration of action exceeding 5 hours. Mesenteric bleeding times were prolonged by Ro 43-8857 only at doses causing supra-maximal inhibition of aggregation, suggesting these two effects could be partially dissociated. L-700,462 (3 mg/kg i. v.) was shorter acting than Ro 43-8857 in guinea-pigs (duration ~1 hour) and the antiaggregatory effect was accompanied by mesenteric bleeding time prolongations. In conscious dogs, ex vivo aggregation was inhibited to —80% by Ro 43-8857 (0.3 mg/kg i. v. or 10 mg/kg p. o.) and L-700,462 (1 mg/kg i.v.). However, bleeding time prolongations accompanied these anti-aggregatory effects with both compounds.In conclusion, we have shown clear differences between two synthetic GP-IIb/IIIa antagonists, both in terms of their species-specificity in vitro and in terms of their in vivo profile, and in particular the propensity to promote bleeding from mesenteric arteries in guinea-pigs. However, the ability of Ro 43-8857 to discriminate between anti-aggregatory and bleeding effects was not evident when the bleeding time measurements were performed on the dog jowl. This suggests that the species and/or vessels on which the bleeding time is performed, is also an important consideration when characterizing and comparing antiplatelet compounds, even with drugs acting via the same mechanism. These results are relevant for the future design of in vivo animal experiments to characterize this new class of compounds and in the interpretation of the data obtained to the clinical situation. The animal models described here are well suited for comparative studies of different GP-IIb/IIIa antagonists, providing information on in vivo potency, duration of action and effect-bioavailability following different routes of administration.Orally active GP-IIb/IIIa antagonists have not previously been described in the literature. The long duration of action and oral activity shown by Ro 43-8857 suggests a potential use of such compounds in arterial thrombotic disorders requiring chronic therapy.


1998 ◽  
Vol 80 (09) ◽  
pp. 469-476 ◽  
Author(s):  
Pierre Savi ◽  
Alain Badorc ◽  
Alain Lalé ◽  
Marie-Françoise Bordes ◽  
Josette Bornia ◽  
...  

SummaryThe aim of this study was to describe the pharmacological properties of SR 121787, a new antiaggregating drug which is metabolized in vivo into SR 121566, a potent non-peptide antagonist of Gp IIb/IIIa. In vitro, SR 121566 antagonized the binding of [125I]-fibrinogen (IC50 = 19.8 ± 6.3 nM) and of [125I]-L-692,884, an RGD-containing peptide (IC50 = 291 ± 96 nM) to activated human platelets. SR 121566 inhibited the aggregation of human platelets induced by ADP, collagen, thrombin, arachidonic acid and PAF at concentrations lower than 0.1 μM. Adhesion of human platelets to adhesive proteins was inhibited by SR 121566 (IC50 = 40.3 ± 2.5 nM) only when Gp IIb/IIIa and fibrinogen were involved. No effect was found with regard to other adhesive proteins and/or other integrins. SR 121787 demonstrated a potent and sustained antiaggregating effect when administered intravenously to baboons at a dose 50 μg/kg, and eight hours after the administration of 100 μg/kg, ADP-induced aggregation was still strongly inhibited (more than 80%). A single oral administration of 2 mg/kg of SR 121787 produced a nearly complete inhibition of platelet aggregation for up to 8 h (ED50 at 8 h = 193 ± 20 μg/kg), a significant residual antiaggregating activity being still observed 24h after the administration. When administered orally to rabbits, SR 121787 exhibited a potent antiaggregating (ED50 = 2.3 ± 0.3 mg/kg) and antithrombotic activity in an arterio-venous shunt thrombosis model (ED50 = 10.4 ± 0.8 mg/kg). After oral and IV administration, SR 121787 was well tolerated suggesting that SR 121787, the most potent and long lasting orally active Gp IIb/IIIa antagonist described to date, is a promising antithrombotic compound.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Manojkumar Valiyaveettil ◽  
Weiyi Feng ◽  
Ganapati Mahabaleshwar ◽  
David Phillips ◽  
Tatiana Byzova ◽  
...  

Functional activity of platelet fibrinogen receptor αIIbβ3 is crucial for hemostasis and thrombosis. The process of αIIbβ3 activation in platelet aggregation is tightly regulated. It has been previously shown that β3 subunit of the complex undergo tyrosine phosphorylation, which, in turn, is believed to control recruitment of several intracellular adaptors. Mutations of Tyr747/ Tyr759 within the cytoplasmic domain of αIIbβ3 (DiYF substitution) were found to result in reversible platelet aggregation. To assess whether αIIbβ3 tyrosine phosphorylation is critical for arterial thrombosis, we utilized intravital microscopy to monitor thrombus formation in vivo in WT and DiYF mice. Compared to WT, DiYF mice exhibited delayed platelet adhesion and reduced rate of thrombus formation at the initial stages of thrombosis. Likewise, isolated DiYF platelets exhibited reduced adhesion to collagen under in vitro sheer conditions compared to WT. The progression phase of thrombosis in vivo was similar in WT and DiYF mice. The most dramatic difference was observed at the final phase of thrombus formation since it took 3-times longer for blood vessels in DiYF mice to occlude compared to WT. To specifically address the role if β3 phosphorylation in platelet αIIbβ3 vs αvβ3 on leukocytes and vascular cells, we transfused labeled WT and DiYF platelets into irradiated WT mice with low blood cells and platelet counts. It was found that transfusion of DiYF but not WT platelets resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion time in vivo. Similar differences were observed in tail bleeding test. Importantly, we have found that the lack of β3 phosphorylation impaired an ability of platelets to generate microparticles in response to activation, an event believed to be critical for the final stages of thrombosis. When stimulated with thrombin and PMA, DiYF platelets shed ~50% less Annexin V-positive microparticles as compared to WT platelets. Thus, β3 tyrosine phosphorylation of αIIbβ3 in platelets is crucial for the microparticles generation by activated platelets and the overall process of arterial thrombosis in vivo.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


Sign in / Sign up

Export Citation Format

Share Document