SR 121787, a New Orally Active Fibrinogen Receptor Antagonist

1998 ◽  
Vol 80 (09) ◽  
pp. 469-476 ◽  
Author(s):  
Pierre Savi ◽  
Alain Badorc ◽  
Alain Lalé ◽  
Marie-Françoise Bordes ◽  
Josette Bornia ◽  
...  

SummaryThe aim of this study was to describe the pharmacological properties of SR 121787, a new antiaggregating drug which is metabolized in vivo into SR 121566, a potent non-peptide antagonist of Gp IIb/IIIa. In vitro, SR 121566 antagonized the binding of [125I]-fibrinogen (IC50 = 19.8 ± 6.3 nM) and of [125I]-L-692,884, an RGD-containing peptide (IC50 = 291 ± 96 nM) to activated human platelets. SR 121566 inhibited the aggregation of human platelets induced by ADP, collagen, thrombin, arachidonic acid and PAF at concentrations lower than 0.1 μM. Adhesion of human platelets to adhesive proteins was inhibited by SR 121566 (IC50 = 40.3 ± 2.5 nM) only when Gp IIb/IIIa and fibrinogen were involved. No effect was found with regard to other adhesive proteins and/or other integrins. SR 121787 demonstrated a potent and sustained antiaggregating effect when administered intravenously to baboons at a dose 50 μg/kg, and eight hours after the administration of 100 μg/kg, ADP-induced aggregation was still strongly inhibited (more than 80%). A single oral administration of 2 mg/kg of SR 121787 produced a nearly complete inhibition of platelet aggregation for up to 8 h (ED50 at 8 h = 193 ± 20 μg/kg), a significant residual antiaggregating activity being still observed 24h after the administration. When administered orally to rabbits, SR 121787 exhibited a potent antiaggregating (ED50 = 2.3 ± 0.3 mg/kg) and antithrombotic activity in an arterio-venous shunt thrombosis model (ED50 = 10.4 ± 0.8 mg/kg). After oral and IV administration, SR 121787 was well tolerated suggesting that SR 121787, the most potent and long lasting orally active Gp IIb/IIIa antagonist described to date, is a promising antithrombotic compound.

1979 ◽  
Author(s):  
J. Hawiger ◽  
S. Parkinson ◽  
S. Timmons

Fibrinogen is a plasma factor required for aggregation of human platelets by ADP. The mechanism of platelet-ADP-fibrinogen interaction was studied by measuring the equilibrium binding of 125I-fibrinogen to human platelets separated from plasma proteins. Binding of 125I-fibrinogen to platelets not stimulated with ADP was low and unaffected by an excess of unlabel led fibrinogen. However, when platelets were stimulated with 4μM of ADP, there was an eightfold increase In the number of available binding sites for human fibrinogen, with affinity constant of 1.9 x 109M-1. This striking increase in fibrinogen receptor sites on human platelets was specific for ADP as contrasted to ATP, AMP, and adenosine. Prostacyclin (Prostaglandin I2, PGI2), a novel prostaglandin produced by the blood vessel wall, completely blocked this ADP-induced increase in fibrinogen receptor sites on human platelets. The effect of PGI2 was prompt and concentration dependent, reaching maximum at 10-9M. 6-keto PGF2 a stable derivative ot PGI2, did not have such an effect. Thus movement of fibrinogen receptor sites on human platelet membrane stimulated with ADP is prevented by PGI2. This represents a new biologic property of this vascular hormone and contributes to better understanding of its potent inhibitory effect in vitro and in vivo on ADP-induced platelet aggregation requiring mobilization of fibrinogen receptor.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1891-1891
Author(s):  
John T. Piper ◽  
Jaroslav G. Vostal

Abstract Clinical performance of platelet products processed or stored under novel conditions is difficult to predict based on in vitro studies alone. Evaluation of such products involves determination of recovery and survival of radiolabeled platelets in human volunteers as a surrogate endpoint for platelet efficacy. Such human studies pose some risk to volunteers, are a financial burden on the sponsor, and stifle innovation in the development of platelet products. The development of an animal model for evaluating human platelets has been limited by rapid, immunemediated clearance of human cells. In the current studies, severe combined immunodeficient (SCID) mice were used to circumvent the need to block the reticuloendothelial system and prolong circulation of human cells. Human platelets were infused via tail vein into normal and SCID mice, and the recoveries and survival times compared. Mouse whole blood was collected at various time points post-infusion, and human platelets were detected by flow cytometry using an anti-human CD41 monoclonal antibody. Recovery was defined as percent human platelets in circulation relative to time zero, and survival time in circulation as the t1/2 of the human platelets. Recoveries and survival times were different between normal and SCID mice, with a maximal difference in recovery of 60.3% at 4 hours post-infusion (normal recovery, 11.1 ± 9.1%; SCID recovery, 71.4 ± 8.8%), and survival times of 1.4 ± 0.4 hours and 10.7 ± 2.3 hours in normal and SCID mice, respectively (N=3). Chemically treated and aged platelets were used to evaluate the ability of the model to detect differences in control and damaged platelets. Chemical damage was induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler which mimics the platelet storage lesion. Platelets were exposed to 10 μM CCCP in methanol, control platelets were exposed to an equal volume of methanol (N=3). CCCP treatment of platelets decreased agonist-induced aggregation (Control aggregation, 73.3 ± 6.8%; CCCP-treated platelet aggregation, 13.8 ± 5.3%). Recovery of control and CCCP-treated platelets were 31.5 ± 16.9% and 7.9 ± 5.1%, respectively, at 4-hours post-infusion. Survival times were 1.3 hours for control and 1.9 hours for CCCP-treated platelets. For storage studies, in vitro cell quality parameters were evaluated in three products, and each product was infused into 3 animals on Day 1 and 3 different animals on Day 7. In Day 7 platelets, in vitro platelet parameters were decreased compared to Day 1. Platelet counts decreased an average of 22.8% ± 2.2% between Day 1 and Day 7. pH decreased from 6.7 ± 0.1 at Day 1 to 5.8 ± 0.1 at Day 7. All platelet products had visible swirl on Day 1 and no swirl on Day 7. Platelets stored for 7 days showed decreased recovery over Day 1 platelets at 4 hours post-infusion (Day 1, 66.9 ± 12.8%; Day 7, 0.2 ± 0.08%). The SCID mouse may be a useful model for evaluating the impact of new technologies (apheresis devices, anticoagulants, storage containers, pathogen inactivation systems) on the in vivo efficacy of human platelets. In two different models of platelet damage (chemical and storage induced damage), this model can distinguish between normal and damaged platelets. Recovery of Infused Day 1 and Day 7 Human Platelets in SCID Mice Recovery of Infused Day 1 and Day 7 Human Platelets in SCID Mice


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3361-3361
Author(s):  
Riitta Lassila ◽  
Annukka Jouppila ◽  
Ulla M Marzec ◽  
Stephen R Hanson

Abstract Abstract 3361 We have developed a semi-synthetic antithrombotic heparin complex, APL001, to mimic mast cell-derived natural heparin proteoglycans (HepPG). HepPG attenuate platelet-collagen interactions under blood flow by inhibiting VWF- and GPIIb/IIIa -mediated platelet aggregation. In addition, rat-derived HepPG arrest platelet thrombus growth on collagen surfaces or at vascular injury sites, both in vitro and in vivo (Lassila et al.ATVB 1997, Kauhanen et al. ATVB 2000, Olsson et al. Thromb Haemost 2002). Our objective was to study the inhibitory capacity of APL001 for preventing human platelet aggregation in vitro and acute thrombosis in a baboon model in vivo. The effects of unfractionated heparin (UFH) and APL001 were compared in relevant coagulation assays (APTT, PT, thrombin time, anti-FXa activity, fibrinogen, FVIII:C and VWF activity (VWF:RCo) and antigen). Additionally, agonist-induced (collagen, ristocetin and ADP) platelet aggregation in citrate or hirudin-anticoagulated whole blood (Multiplate®) (n=10 healthy subjects), and platelet function analysis (PFA100®) in citrated platelet rich plasma (PRP) were assessed. In a well-established baboon thrombosis model a collagen-coated PTFE graft (length 2 cm, lumen 4 mm) was placed in an arterio-venous shunt. Prior to blood contact the thrombogenic surface was treated for 10 min with UFH or APL001 (both at 4 mg/mL). Thrombus formation was initiated by exposing the surface to blood flow (100 mL/min, shear rate 265−1), and the deposition of 111-In-labeled platelets and of fibrin was quantified continuously over 1h. Fibrin thrombus accumulation was assessed from the incorporation of circulating 125-I-fibrinogen. In the heparin-relevant coagulation tests APL001 was comparable or 20–30% more potent than UFH while FVIII, fibrinogen and VWF variables remained unaltered. In contrast to UFH, APL001 (300 μg/mL) consistently inhibited collagen- and ristocetin-induced platelet aggregation, whereas UFH had only a modest effect in comparison with PBS control (Table). ADP-induced aggregation was unaffected. Comparable results were observed in the PRP aggregation assay. PFA100 testing also demonstrated inhibitory effects. In the in vivo thrombosis model (n=4) APL001 reduced platelet deposition on collagen (vs. the results with UFH) by 34% (p=0.01), while platelet accumulation in distal propagated thrombus was reduced by 61% (p=0.16). APL001-treated surfaces accumulated 45% less fibrin than the UFH-treated surfaces (p=0.008). In conclusion, when compared with UFH APL001 inhibited both collagen- and ristocetin-induced platelet aggregation in human blood, while anticoagulant properties were comparable. In the absence of systemic antithrombotic drugs, exposure of APL001 to a highly thrombogenic collagen surface arrested thrombus formation in an in vivo baboon model. This finding suggests that locally administered APL001 alone, due to its dual antiplatelet and anticoagulant effects, may limit the growth and size of thrombus and thereby prevent subsequent thrombo-occlusion.TableAnticoagulantInhibition-% of platelet aggregation ± SDConc. 300 μg/mLnColl (3.2 μg/mL)Ristocetin (0.77 mg/mL)ADP (6.4 μM)CitrateAPL0011033 ± 1543 ± 166 ± 24UFH1011 ± 1323 ± 153 ± 7p value0.0030.0100.700HirudinAPL0011032 ± 1043 ± 178 ± 10UFH108 ± 1116 ± 166 ± 9p value0.0000.0020.600 Disclosures: Lassila: Aplagon: Chief Scientific Advisor.


1993 ◽  
Vol 69 (03) ◽  
pp. 262-267 ◽  
Author(s):  
J M Herbert ◽  
A Bernat ◽  
G Barthelemy ◽  
F Dol ◽  
M Rinaldi

SummarySR 46349 (trans-4-[(3Z)3-(2-dimethylaminoethyl)oxyimino-3(2-fluorophenyl)propen-1-yl] phenol, hemifumarate) is the first member of a newly-developed 5-HT2 antagonist series. SR 46349 potently inhibited serotonin-induced aggregation of rabbit and human platelets (IC50 = 1 and 3.9 nM respectively) but had no effect on the action of other platelet aggregating agents. SR 46349 was 118 and 25 times more potent than ketanserin against 5-HT + epinephrine-induced aggregation of rabbit and human platelets respectively.A single per os administration of SR 46349 (1 mg/kg) resulted in a strong inhibition of 5-HT + epinephrine-induced platelet aggregation in the rabbit as measured ex vivo (67% inhibition, 6 h after the administration). Intravenous or oral administration of SR 46346 inhibited in a dose-dependent manner venous thrombosis induced by ligature of the jugular vein of rabbits whose blood was made hypercoagulable by i.v. administration of tissue thromboplastin. The doses of SR 46349 which inhibited 50% of thrombus formation were 1.5 ± 0.8 mg/kg and 17 ± 0.5 mg/kg after i.v. or oral administration respectively. When given i.v. to rabbits, SR 46349 exhibited a dose-dependent antithrombotic effect in an arterio-venous shunt model. Significant increase of the bleeding time was observed after the i.v. administration of 5 mg/kg of SR 46349 (3-fold increase). In dogs, SR 46349 inhibited cyclic coronary artery blood flow variations, complete abolition of CFVs being achieved after the i.v. administration of 0.5 mg/kg.In conclusion, SR 46349 is a highly potent, selective antagonist of serotonin in vitro and is to be considered as a potent, orally active antithrombotic agent.


1995 ◽  
Vol 73 (04) ◽  
pp. 693-701 ◽  
Author(s):  
Samia Rabhi-Sabile ◽  
Dominique Pidard

SummaryAlthough plasmin can trigger strong platelet responses such as shape change and exocytosis of internal granules, limited platelet aggregation is induced by this proteinase, owing to its capacity to rapidly proteolyse secreted adhesive proteins. In this context, we have investigated the state of activation of the fibrinogen receptor, the integrin αIIbβ3, on platelets exposed to plasmin. Following incubation with plasmin at 37 °C, washing, and resuspension, platelets exhibit a moderate, low-velocity aggregation when stirred in the presence of fibrinogen. Optimum aggregability is observed when platelets have been exposed to plasmin activity of ≈0.5 CU/ml for 20 min, and aggregation is insensitive to the presence of antagonists such as prostaglandin (PG) E1 and apyrase. Plasmin-induced platelet aggregability is associated with the expression of active fibrinogen receptors on the cell surface, which, using a l25I-fibrinogen binding assay, can be quantified to ≈2,300 molecules per platelet. Exposure of active αIIbβ3 receptors appears to depend partially, but not totally on a metabolic activation and granule exocytosis at the time of incubation with plasmin. In contrast with a-thrombin, plasmin-induced activation of αIIbβ3 is sustained and cannot be reversed by exposure of platelets to PGE1. Immunoblotting analysis of the receptor subunits shows no extensive proteolytic modification of αIIbβ3 by plasmin, and only reveals a limited proteolysis of the aminoterminal domain of the αIIb subunit. In addition to their capacity to aggregate in the presence of fibrinogen alone, plasmin-treated platelets also show a potentiated aggregability in response to low doses of ADP. Thus, plasmin has the potential to activate the platelet fibrinogen receptor in such a way that it remains irreversibly available to fibrinogen on the surface of nonaggregated cells, a feature that may participate to pathological states of in vivo platelet hyperaggregability.


1973 ◽  
Vol 29 (03) ◽  
pp. 712-721 ◽  
Author(s):  
Francis C. Chao ◽  
James L. Tullis

SummaryThe in vitro incubation of platelets with mithramycin caused a biphasic effect on ADP-induced aggregation. At a low dose of 10 [xg/ml, mithramycin caused an enhancement of aggregation whereas at high doses above 50 [μg/ml, it produced variable effects on aggregation with inhibition predominating. Effects on ADP-induced aggregation similar to those caused by mithramycin were produced by the simple addition of CaCl2 solution to the plasma medium. Mithramycin in the range which increased aggregation altered neither the whole blood clotting times nor the ionic calcium concentrations, but did increase the uptake of radioactive calcium by platelets. The results confirmed the in vivo observations that mithramycin treatment during tumor chemotherapy may directly alter the aggregation response of circulating platelets to ADP. The effects of mithramycin on aggregation may be mediated by alteration of calcium influx in normal platelets.


1993 ◽  
Vol 70 (05) ◽  
pp. 838-847 ◽  
Author(s):  
Nigel S Cook ◽  
Oliver Bruttger ◽  
Charles Pally ◽  
Alex Hagenbach

SummaryIn vitro platelet aggregation studies in whole blood were used to define the species-specificity profile of two synthetic GP-IIb/IIIa antagonists, Ro 43-8857 and L-700,462. Aggregation of rhesus monkey platelets was inhibited with a similar potency to human platelets, whereas both compounds were poor antagonists in mini-pig, rabbit or hamster blood. Compared to human platelets, Ro 43-8857 was 2-3-fold less active as an inhibitor of dog and guinea-pig platelet aggregation, whereas L-700,462 was, respectively, 4- and 14-fold less active in these species.In vivo investigations with these two compounds were performed in anesthetized guinea-pigs and conscious dogs, with bleeding times measured on small mesenteric arteries or on the inner jowl respectively. Ex vivo ADP-induced whole blood platelet aggregation was completely inhibited in guinea-pigs by Ro 43-8857 following intravenous administration of 0.1 mg/kg and intraduodenal administration of 3 mg/kg, with a duration of action exceeding 5 hours. Mesenteric bleeding times were prolonged by Ro 43-8857 only at doses causing supra-maximal inhibition of aggregation, suggesting these two effects could be partially dissociated. L-700,462 (3 mg/kg i. v.) was shorter acting than Ro 43-8857 in guinea-pigs (duration ~1 hour) and the antiaggregatory effect was accompanied by mesenteric bleeding time prolongations. In conscious dogs, ex vivo aggregation was inhibited to —80% by Ro 43-8857 (0.3 mg/kg i. v. or 10 mg/kg p. o.) and L-700,462 (1 mg/kg i.v.). However, bleeding time prolongations accompanied these anti-aggregatory effects with both compounds.In conclusion, we have shown clear differences between two synthetic GP-IIb/IIIa antagonists, both in terms of their species-specificity in vitro and in terms of their in vivo profile, and in particular the propensity to promote bleeding from mesenteric arteries in guinea-pigs. However, the ability of Ro 43-8857 to discriminate between anti-aggregatory and bleeding effects was not evident when the bleeding time measurements were performed on the dog jowl. This suggests that the species and/or vessels on which the bleeding time is performed, is also an important consideration when characterizing and comparing antiplatelet compounds, even with drugs acting via the same mechanism. These results are relevant for the future design of in vivo animal experiments to characterize this new class of compounds and in the interpretation of the data obtained to the clinical situation. The animal models described here are well suited for comparative studies of different GP-IIb/IIIa antagonists, providing information on in vivo potency, duration of action and effect-bioavailability following different routes of administration.Orally active GP-IIb/IIIa antagonists have not previously been described in the literature. The long duration of action and oral activity shown by Ro 43-8857 suggests a potential use of such compounds in arterial thrombotic disorders requiring chronic therapy.


1989 ◽  
Vol 77 (1) ◽  
pp. 99-103 ◽  
Author(s):  
R. K. McCulloch ◽  
J. Summers ◽  
R. Vandongen ◽  
I. L. Rouse

1. At present it is unclear whether platelet-activating-factor (PAF)-induced aggregation is mediated by thromboxane. To obtain further information about this event we have compared the affects of aspirin on platelet aggregation and secretion induced by PAF and collagen. 2. Collagen and PAF induced aggregation and secretion in human platelets in a dose-related manner. 3. Aspirin inhibited the magnitude of both platelet aggregation and secretion induced by PAF and collagen, but the degree of inhibition was much greater for collagen. 4. Aspirin strongly inhibited the aggregation rate of collagen-induced platelet aggregation, but had no measurable effect on the rate of PAF-induced aggregation. 5. Inconsistencies reported in previous studies of the effect of aspirin on PAF-induced platelet aggregation may be explained, in part, by the doses of PAF used and the method of inactivating cyclo-oxygenase (in vitro compared with in vivo). 6. Our results suggest that the initial events of PAF-induced aggregation are independent of thromboxane A2 formation and that thromboxane A2 plays only a minor role in the later phase of PAF-induced aggregation.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3522-3530 ◽  
Author(s):  
Dongjun Li ◽  
Shelley August ◽  
Donna S. Woulfe

Abstract Glycogen synthase kinase (GSK)3β is a ser-thr kinase that is phosphorylated by the kinase Akt. Although Akt has been shown to regulate platelet function and arterial thrombosis, its effectors in platelets remain unknown. We show here that agonist-dependent phosphorylation of GSK3β in platelets is Akt dependent. To determine whether GSK3β regulates platelet function, platelets from mice lacking a single allele of GSK3β were compared with those of wild-type (WT) controls. GSK3β+/− platelets demonstrated enhanced agonist-dependent aggregation, dense granule secretion, and fibrinogen binding, compared with WT platelets. Treatment of human platelets with GSK3 inhibitors renders them more sensitive to agonist-induced aggregation, suggesting that GSK3 suppresses platelet function in vitro. Finally, the effect of GSK3β on platelet function in vivo was evaluated using 2 thrombosis models in mice. In the first, 80% of GSK3β+/− mice (n = 10) formed stable occlusive thrombi after ferric chloride carotid artery injury, whereas the majority of wild-type mice (67%) formed no thrombi (n = 15). In a disseminated thrombosis model, deletion of a single allele of GSK3β in mice conferred enhanced sensitivity to thrombotic insult. Taken together, these results suggest that GSK3β acts as a negative regulator of platelet function in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document