Lithium Affinity for DNA and RNA Nucleobases. The Role of Theoretical Information in the Elucidation of the Mass Spectrometry Data

2001 ◽  
Vol 105 (20) ◽  
pp. 4735-4741 ◽  
Author(s):  
Nino Russo ◽  
Marirosa Toscano ◽  
André Grand
2020 ◽  
Author(s):  
Brendan M. Floyd ◽  
Kevin Drew ◽  
Edward M. Marcotte

ABSTRACTProtein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites but the functions of a vast majority of these sites remain unknown, with fewer than 5% of sites currently assigned a function. To increase our understanding of functional protein phosphorylation we developed an approach for identifying the phosphorylation-dependence of protein assemblies in a systematic manner. A combination of non-specific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry allowed us to identify changes in protein interactions after the removal of phosphate modifications. With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive interactions. We recovered known phosphorylation-dependent interactors such as the FACT complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource for obtaining a better understanding of the role of phosphorylation in native macromolecular assemblies.


2020 ◽  
pp. mcp.R120.002090 ◽  
Author(s):  
Weiqian Cao ◽  
Mingqi Liu ◽  
Siyuan Kong ◽  
Mengxi Wu ◽  
Yang Zhang ◽  
...  

Intact glycopeptide identification has long been known as a key and challenging barrier to the comprehensive and accurate understanding the role of glycosylation in an organism. Intact glycopeptide analysis is a blossoming field that has received increasing attention in recent years. Mass spectrometry (MS)-based strategies and relative software tools are major drivers that have greatly facilitated the analysis of intact glycopeptides, particularly intact N-glycopeptides. This manuscript provides a systematic review of the intact glycopeptide identification process using mass spectrometry data generated in shotgun proteomic experiments, which typically focus on N-glycopeptide analysis. Particular attention is paid to the software tools that have been recently developed in the last decade for the interpretation and quality control of glycopeptide spectra acquired using different MS strategies. The review also provides information about the characteristics and applications of these software tools, discusses their advantages and disadvantages, and concludes with a discussion of outstanding tools.


2007 ◽  
Vol 177 (4S) ◽  
pp. 52-53
Author(s):  
Stefano Ongarello ◽  
Eberhard Steiner ◽  
Regina Achleitner ◽  
Isabel Feuerstein ◽  
Birgit Stenzel ◽  
...  

2007 ◽  
Vol 3 (2) ◽  
pp. 127-147 ◽  
Author(s):  
Anestis Antoniadis ◽  
Jeremie Bigot ◽  
Sophie Lambert-Lacroix ◽  
Frederique Letue

2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


Author(s):  
Trevor N. Clark ◽  
Joëlle Houriet ◽  
Warren S. Vidar ◽  
Joshua J. Kellogg ◽  
Daniel A. Todd ◽  
...  

Author(s):  
In Kwon Choi ◽  
Eroma Abeysinghe ◽  
Eric Coulter ◽  
Suresh Marru ◽  
Marlon Pierce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document