scholarly journals Role of Long Non-Coding RNA Polymorphisms in Cancer Chemotherapeutic Response

2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.

2021 ◽  
Vol 22 (10) ◽  
pp. 5348
Author(s):  
Pei-Fang Hsieh ◽  
Cheng-Chia Yu ◽  
Pei-Ming Chu ◽  
Pei-Ling Hsieh

Long non-coding RNAs (lncRNAs) regulate a diverse array of cellular processes at the transcriptional, post-transcriptional, translational, and post-translational levels. Accumulating evidence suggests that lncRNA MEG3 exerts a large repertoire of regulatory functions in cellular stemness. This review focuses on the molecular mechanisms by which lncRNA MEG3 functions as a signal, scaffold, guide, and decoy for multi-lineage differentiation and even cancer progression. The role of MEG3 in various types of stem cells and cancer stem cells is discussed. Here, we provide an overview of the functional versatility of lncRNA MEG3 in modulating pluripotency, differentiation, and cancer stemness.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Kai Liu ◽  
Jiacheng Wu ◽  
...  

Background: Long non-coding RNA (lncRNA) breast cancer anti-estrogen resistance 4 (BCAR4) is a characterized oncogenic lncRNA in different cancers. This review is dedicated to summarize various molecular mechanisms of BCAR4 and demonstrate that the biological functions exerted by BCAR4 are good entry points for therapy. Methods: The molecular mechanism of BCAR4 acting on tumors is summarized by reviewing PubMed. Results: The expression of lncRNA BCAR4 is abnormally increased in all kinds of tumors, including colorectal cancer, prostate cancer, bladder cancer, gastric cancer, chondrosarcoma, glioma, breast cancer, glioma, gastric cancer, liver cancer, cervical cancer, lung cancer, etc. Besides, BCAR4 mediates multiple processes involved in carcinogenesis, including proliferation, invasion, anti-apoptosis, migration. Conclusion: BCAR4 may show great clinical value in this direction as a therapeutic cancer target.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jinlan Chen ◽  
Enqing Meng ◽  
Yexiang Lin ◽  
Yujie Shen ◽  
Chengyu Hu ◽  
...  

Background: As we all know, long non-coding RNA (lncRNA) affects tumor progression, which has caused a great upsurge in recent years. It can also affect the growth, migration, and invasion of tumors. When we refer to the abnormal expression of lncRNA, we will find it associated with malignant tumors. In addition, lncRNA has been proved to be a key targeted gene for the treatment of some diseases. PART1, a member of lncRNA, has been reported as a regulator in the process of tumor occurrence and development. This study aims to reveal the biological functions, specific mechanisms, and clinical significance of PART1 in various tumor cells. Methods: Through the careful search of PUBMED, the mechanisms of the effect of PART1 on tumorigenesis and development are summarized. Results: On the one hand, the up-regulated expression of PART1 plays a tumor-promoting role in tumors, including lung cancer, prostate cancer, bladder cancer and so on. On the other hand, PART1 is down-regulated in gastric cancer, glioma and other tumors to play a tumor inhibitory role. In addition, PART1 regulates tumor growth mainly by targeting microRNA such as miR-635, directly regulating the expression of proteins such as FUS/EZH2, affecting signal pathways such as the Toll-like receptor pathway, or regulating immune cells. Conclusion: PART1 is closely related to tumors by regulating a variety of molecular mechanisms. In addition, PART1 can be used as a clinical marker for the early diagnosis of tumors and plays an important role in tumor-targeted therapy.


Author(s):  
Chengyu Hu ◽  
Kai Liu ◽  
Bei Wang ◽  
Wen Xu ◽  
Yexiang Ling ◽  
...  

Background: There is increasing evidence that lncRNA, a type of transcript which is over 200 nucleotides in length may serve as oncogenes or suppressor genes are implicated in the pathophysiology of human diseases. In particular, tumorigenesis and progress are closely correlated with its abnormal expression. In addition, it may become a promising target for many oncology biotherapies. Abnormal DLX6-AS1 expression affects different cellular processes such as proliferation, aggression and metastasis. This review aims to probe into the pathophysiological functions and molecular mechanisms of DLX6-AS1 in various cancers. Methods: By retrieving the literature, this review summarizes the biological function and mechanism of LncRNA DLX6- AS1 in tumor occurrence. Results: The lncRNA DLX6-AS1 is a new tumor-related RNA that has recently been found to be aberrantly expressed in a divers cancers, containing pancreatic cancer, osteosarcoma, non-small cell lung cancer, gastric carcinoma, glioma, hepatocellular cancer, colorectal carcinoma, renal carcinoma, esophageal squamous cell cancer, ovarian cancer, Ewing sarcoma, cervical cancer, breast cancer, thyroid cancer, neuroblastoma, pulmonary adenocarcinoma, nasopharyngeal carcinoma, squamous laryngeal cancer and bladder cancer, etc. Meanwhile, it is identified DLX6-AS1 regulates the aggression, translocation and proliferation of diverse cancers. Conclusion: LncRNA DLX6-AS1 may be viable markers in tumors or a potential therapeutic target for multiple tumors.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Senxiang Chen ◽  
Da Liu ◽  
Zimo Zhou ◽  
Sen Qin

Abstract Background Osteoporosis is a widespread and serious metabolic bone disease. At present, revealing the molecular mechanisms of osteoporosis and developing effective prevention and treatment methods are of great significance to health worldwide. LncRNA is a non-coding RNA peptide chain with more than 200 nucleotides. Researchers have identified many lncRNAs implicated in the development of diseases and lncRNA H19 is an example. Results A large amount of evidence supports the fact that long non-coding RNA (lncRNA) genes, such as H19, have multiple, far-reaching effects on various biological functions. It has been found that lncRNA H19 has a role in the regulation of different types of cells in the body including the osteoblasts, osteocytes, and osteoclasts found in bones. Therefore, it can be postulated that lncRNA H19 affects the incidence and development of osteoporosis. Conclusion The prospect of targeting lncRNA H19 in the treatment of osteoporosis is promising because of the effects that lncRNA H19 has on the process of osteogenic differentiation. In this review, we summarize the molecular pathways and mechanisms of lncRNA H19 in the pathogenesis of osteoporosis and summarize the research progress of targeting H19 as a treatment option. Research is emerging that explores more effective treatment possibilities for bone metabolism diseases using molecular targets.


2021 ◽  
Vol 20 (4) ◽  
pp. 17-21
Author(s):  
S.A. Levakov ◽  
◽  
G.Ya. Azadova ◽  
A.E. Mamedova ◽  
Kh.R. Movtaeva ◽  
...  

Objective. To study the expression level of long non-coding RNAs ROR and MALAT1 in tissue samples of uterine fibroids. Patients and methods. Samples of myomatous nodes and tissues of normal myometrium in 28 women of reproductive age were examined. The analysis of the expression of long non-coding RNAs was carried out using a real-time reverse-transcription polymerase chain reaction (RT-PCR) with specific primers. Results. There was a significant decrease in the expression level of long non-coding RNA ROR and an increase in the MALAT1 expression in tissue samples of uterine fibroids relative to the control group. Conclusion. The results obtained demonstrate a possible role of long non-coding RNAs in the development of uterine fibroids and correlate with the data which we obtained for patients with endometriosis. Detecting the expression level of long non-coding RNAs can improve the existing methods for diagnosing this disease. However, further research is required to determine the clinical significance of MALAT1 and ROR, and the molecular mechanisms underlying the action of these RNAs in uterine fibroid cells. Key words: long non-coding RNAs, uterine fibroids, myomectomy, lncROR, MALAT1


2018 ◽  
Vol 4 (3) ◽  
pp. 17 ◽  
Author(s):  
John S. Mattick

Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiping Xia ◽  
Yao He ◽  
Yu Gan ◽  
Bo Zhang ◽  
Guoyu Dai ◽  
...  

Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.


Author(s):  
Luisa Marracino ◽  
Francesca Fortini ◽  
Esmaa Bouhamida ◽  
Francesca Camponogara ◽  
Paolo Severi ◽  
...  

Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.


Sign in / Sign up

Export Citation Format

Share Document