scholarly journals Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification

2007 ◽  
Vol 111 (50) ◽  
pp. 18731-18737 ◽  
Author(s):  
Xiao-Rong Chen ◽  
Yi-Hsu Ju ◽  
Chung-Yuan Mou

2019 ◽  
Vol 7 (1) ◽  
pp. 23-33
Author(s):  
Vaibhav Mishra ◽  
Anju Arya ◽  
Tejpal Singh Chundawat

Background: The N-aryl piperazines are an important component of many drug products used for the treatment of malaria, depression, anxiety and Parkinson diseases. Buchwald-Hartwig amination is the latest and well-known reaction for Pd catalyzed direct synthesis of N-aryl piperazine from aryl halides. Although several Pd-ligand systems have already been discovered for this conversion, Pd nanoparticles are recently being used for this useful coupling reaction due to their recyclability and durability. Metal nanoparticles show enhanced catalytic activity compared to their bulk counterparts due to increased surface area at the edges and corners. The use of green algal extract in place of chemical ligands makes this process more environment-friendly and cost-effective. In this research, Pd nanoparticles synthesized using green alga C. Vulgaris were utilized as an alternative approach for the coupling reaction during the preparation of N-aryl piperazines. Methods: Synthesized Pd nanoparticles from C. Vulgaris were characterized by FTIR, SEM and XRD techniques. The catalytic activity of the synthesized nanoparticles was monitored for the synthesis of N-aryl piperazines by Buchwald-Hartwig reaction. The synthesized N-aryl piperazines were characterized by NMR, FTIR and mass analysis. Results: A very good catalytic activity of the synthesized Pd nanoparticles from green alga Chlorella vulgaris extract was observed. The green alga not only reduces the size of the Pd metal to nanoparticles but also acts as a green ligand for reduction of Pd(II) to Pd(0) during nanoparticle synthesis. Using this Pd nanoparticles-green ligand system, several N-aryl piperazines were synthesized in good to excellent yields. Reaction conditions for better conversion were optimized. The comparative advantage of the catalytic system with recently published works on Buchwald-Hartwig C-N coupling reaction is given. Recyclability and durability of the catalyst were explored and the results were found to be promising. A plausible mechanism of Pd nanoparticle catalyzed reaction is also proposed. Conclusion: Catalytic activity of the Pd nanoparticle synthesized from Chlorella vulagris in the synthesis of N-aryl piperazines by Buchwald-Hartwig reaction is reported first time to the best of our knowledge and understanding. The green approach of Pd catalyst to facilitate the reaction and its environmental impact is the main characteristic of the process.



2005 ◽  
Vol 58 (7) ◽  
pp. 507 ◽  
Author(s):  
Xueguang Wang ◽  
Soofin Cheng

Highly ordered large-pore SBA-15 materials functionalized with a high loading of amino groups were synthesized for the first time by co-condensation of tetraethyl orthosilicate (TEOS) and [3-(methylamino)propyl]trimethoxysilane (MAPTMS) using an amphiphilic block copolymer. Addition of inorganic salt to the initial mixture greatly enhanced the mesostructure ordering and stability of the mesoporous materials. The materials thus obtained showed high catalytic activity and selectivity for the synthesis of flavanones by means of the Claisen–Schmidt condensation in the absence of solvent.



2005 ◽  
Vol 230 (1-2) ◽  
pp. 143-150 ◽  
Author(s):  
Lingping Wang ◽  
Aiguo Kong ◽  
Bo Chen ◽  
Hanming Ding ◽  
Yongkui Shan ◽  
...  


RSC Advances ◽  
2017 ◽  
Vol 7 (50) ◽  
pp. 31239-31243 ◽  
Author(s):  
Sanghee Lee ◽  
Changyong Yim ◽  
Sangmin Jeon

Platinum nanodots were synthesized inside ZIF-8/Fe3O4 core–shell hybrid nanoparticles without additional reducing agents, which showed high catalytic activity for the reduction of 4-nitrophenol.



MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).



2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>



Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.



2015 ◽  
Vol 3 (45) ◽  
pp. 22816-22823 ◽  
Author(s):  
Peng Zhang ◽  
Guoqing Guan ◽  
Deni S. Khaerudini ◽  
Xiaogang Hao ◽  
Chunfeng Xue ◽  
...  

Carbon deposition characteristics on PSCFN and Ni–YSZ due to thermal CH4 decomposition are investigated by using TPR technique.



Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.



Sign in / Sign up

Export Citation Format

Share Document