scholarly journals Revealing the Functional States in the Active Site of BLUF Photoreceptors from Electrochromic Shift Calculations

2014 ◽  
Vol 118 (38) ◽  
pp. 11109-11119 ◽  
Author(s):  
Florimond Collette ◽  
Thomas Renger ◽  
Marcel Schmidt am Busch
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hengjun Cui ◽  
Andreas U. Müller ◽  
Marc Leibundgut ◽  
Jiawen Tian ◽  
Nenad Ban ◽  
...  

AbstractPupylation is the post-translational modification of lysine side chains with prokaryotic ubiquitin-like protein (Pup) that targets proteins for proteasomal degradation in mycobacteria and other members of Actinobacteria. Pup ligase PafA and depupylase Dop are the two enzymes acting in this pathway. Although they share close structural and sequence homology indicative of a common evolutionary origin, they catalyze opposing reactions. Here, we report a series of high-resolution crystal structures of Dop in different functional states along the reaction pathway, including Pup-bound states in distinct conformations. In combination with biochemical analysis, the structures explain the role of the C-terminal residue of Pup in ATP hydrolysis, the process that generates the catalytic phosphate in the active site, and suggest a role for the Dop-loop as an allosteric sensor for Pup-binding and ATP cleavage.


Author(s):  
P. Ingram

It is well established that unique physiological information can be obtained by rapidly freezing cells in various functional states and analyzing the cell element content and distribution by electron probe x-ray microanalysis. (The other techniques of microanalysis that are amenable to imaging, such as electron energy loss spectroscopy, secondary ion mass spectroscopy, particle induced x-ray emission etc., are not addressed in this tutorial.) However, the usual processes of data acquisition are labor intensive and lengthy, requiring that x-ray counts be collected from individually selected regions of each cell in question and that data analysis be performed subsequent to data collection. A judicious combination of quantitative elemental maps and static raster probes adds not only an additional overall perception of what is occurring during a particular biological manipulation or event, but substantially increases data productivity. Recent advances in microcomputer instrumentation and software have made readily feasible the acquisition and processing of digital quantitative x-ray maps of one to several cells.


Author(s):  
Kathleen B. Reuter

The reaction rate and efficiency of piperazine to 1,4-diazabicyclo-octane (DABCO) depends on the Si/Al ratio of the MFI topology catalysts. The Al was shown to be the active site, however, in the Si/Al range of 30-200 the reaction rate increases as the Si/Al ratio increases. The objective of this work was to determine the location and concentration of Al to explain this inverse relationship of Al content with reaction rate.Two silicalite catalysts in the form of 1/16 inch SiO2/Al2O3 bonded extrudates were examined: catalyst A with a Si/Al of 83; and catalyst B, the acid/phosphate Al extracted form of catalyst A, with a Si/Al of 175. Five extrudates from each catalyst were fractured in the transverse direction and particles were obtained from the fracture surfaces near the center of the extrudate diameter. Particles were also obtained from the outside surfaces of five extrudates.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1990 ◽  
Vol 64 (01) ◽  
pp. 061-068 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoet ◽  
F De Cock ◽  
D Collen

SummaryThe activation of plasminogen by t-PA was measured in the presence and absence of fibrin stimulation, using natural human plasminogen (nPlg) and rPlg-Ala740, a recombinant plasminogen with the active site Ser740 mutagenaed to Ala. Recombinant wild type t-PA (rt-PA) was used as well as rt-PA -Glul275, a recombinant single chain t-PA in which the Arg of the plasmin sensitiv e Arg275- Ile276 peptide bond was substituted with Glu. Conversion of 125I-labeled single chain plasminogen to two-chain plasmin by wild-type or mutant t-PA, was quantitated by SDS gel electrophoresis and radioisotope counting of gel slices, and expressed as initial activation rates (v0 in pM s−1) per 1 μM enzyme. In the absence of fibrin stimulation, the vs for the activation of nPlg and rPlg-Ala740 with the single chain forms of both t-PAs were comparable (0.6 to 2.7 pM s−1) but were lower than with the corresponding two-chain forms (5.3 to 23 pM s−1). In the presence of 1 μM soluble fibrin monomer (desAAfibrin), the v0 for nPlg and rPlg-Ala740 by single chain rt-PA was also comparable (24 and, 33 pM s-1 respectively), whereas with 1 pM CNBr-digested fibrinogen, the vs for nPlg with single chain rt-PA was about 20-fold higher than that of rPlg-Ala740 (135 and 7.5 pM s−1 respectively). In contrast, the vs for nPlg and rPlg-Ala740 by single chain rt-PA- G1u275, two-chain rt-PA-G1u275 or two-chain rt-PA were comparable in the presence of either desAAfibrin or CNBr-digested fibrinogen.These findings confirm and establish: 1) that single chain t-PA is an active enzyme both in the presence and absence of fibrin stimulator; 2) that, in a system devoid of plasmin activity (rPlg- Ala740), the two-chain form of t-PA is about L5 times more active than the single chain form in the absence of fibrin but equipotent in the presence of desAAfibrin; and 3) that the mechanism of stimulation of plasminogen activation with single chain t-PA by CNBr-digested fibrinogen is different from that by soluble fibrin.


Sign in / Sign up

Export Citation Format

Share Document