Control of Mosaic and Turing Patterns by Light and Electric Field in the Methylene Blue−Sulfide−Oxygen System

1998 ◽  
Vol 102 (15) ◽  
pp. 2540-2546 ◽  
Author(s):  
M. Watzl ◽  
A. F. Münster
2000 ◽  
Vol 65 (9) ◽  
pp. 1394-1402 ◽  
Author(s):  
Ľubica Adamčíková ◽  
Mária Hupková ◽  
Peter Ševčík

Spatial patterns in methylene blue-catalyzed oxidation of fructose at alkaline pH were found in aqueous solution and in gel systems. In a thin liquid layer (thickness >2.4 mm) a mixture of spots and stripes was formed by interaction of a nonlinear reaction and the Rayleigh or Maragoni instabilities. The pattern formation was affected by initial reactant concentrations and by the thickness of the reaction mixture layer. Long-lasting structures were formed in gel systems (polyacrylamide, agar, gelatin). These patterns also arise primarily from hydrodynamic processes.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Lefu Mei ◽  
Ranfang Zuo ◽  
Jing Xie ◽  
Libing Liao ◽  
Hao Ding

TiO2-ZrO2composite film with the grain size of 50 nm was synthesized by electric field and heat (EF&H) treatments. Portions of O atoms in the TiO2network structure were replaced by N atoms as revealed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses, suggesting formation of a nonstoichiometric compoundTiO2-xNxon the composite film. The UV-Vis spectra of the film suggested that the visible light with wavelength of 550 nm could be absorbed for the N-doped composite film after EF&H treatment in comparison to a cutoff wavelength of 400 nm for the composite film without EF treatment. Photocatalytic experiments showed that the degradation rate of methylene blue by N-doped composite films increased significantly under visible light irradiation. The partial replacement of O by doped N played a very important role in narrowing the band gap and improving the visible light photocatalytic reactivity.


2013 ◽  
Vol 52 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Bijay K. Agarwalla ◽  
Sainyam Galhotra ◽  
J. K. Bhattacharjee

Soft Matter ◽  
2012 ◽  
Vol 8 (10) ◽  
pp. 2945 ◽  
Author(s):  
J. Carballido-Landeira ◽  
P. Taboada ◽  
A. P. Muñuzuri

Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


Sign in / Sign up

Export Citation Format

Share Document