Bulk Conductivity of Soft Surface Layers:  Experimental Measurement and Electrokinetic Implications†

Langmuir ◽  
2005 ◽  
Vol 21 (22) ◽  
pp. 10054-10060 ◽  
Author(s):  
Lee P. Yezek
Author(s):  
A. L. Chau ◽  
M. K. Cavanaugh ◽  
Y.-T. Chen ◽  
A. A. Pitenis

Abstract Background Soft, biological, and bio-inspired materials are often compositionally heterogeneous and structurally anisotropic, and they frequently feature graded or layered organizations. This design complexity enables exceptional ranges in properties and performance yet complicates a fundamental understanding of the contact mechanics. Recent studies of soft gel layers have relied on Hertzian or Winkler foundation (“bed-of-springs”) models to characterize the mechanics but have found neither satisfactory. Objective The contact mechanics of soft gel layers are not yet fully understood. The aim of this work is to develop a simple contact mechanics model tailored for compositionally-graded materials with soft surface layers under high strains and deformations. Methods Concepts from polymer physics, fluid draining, and Winkler foundation mechanics are combined to develop a simple contact mechanics model which relates the applied normal force to the probe radius of curvature, elastic modulus, and thickness of soft surface layers subjected to high strains. Results This simple model was evaluated with two examples of graded surface gel layers spanning multiple length-scales, including commercially available contact lenses and stratified hydrogels. The model captures the nonlinear contact mechanics of highly strained soft aqueous gel layers more closely than either Hertz or Winkler foundation theory while simultaneously enabling a prediction for the thickness of the surface gel layer. Conclusion These results indicate that this simple model can adequately characterize the contact mechanics of highly strained soft aqueous gel layers.


2016 ◽  
Vol 32 (4) ◽  
pp. 2109-2126 ◽  
Author(s):  
W. D. Liam Finn ◽  
Francisco Ruz

The amplification effects of shallow soft-surface layers with respect to an underlying hard-soil layer or rock are studied using data recorded from the 2011 Tohoku earthquake. Twenty-four sites have been studied with depths to rock ranging from 4–30 m. At each site, two records were available: one in rock at the bottom of the borehole at depths of 100–500 m and one on the surface of the soft-soil layer. Analyses of the soil-rock columns were conducted using the program SHAKE. Good agreement was found between calculated and recorded surface spectra, which demonstrated the reliability of SHAKE analyses for the sites under study. Therefore, SHAKE analyses were used to determine the outcrop motions at the top of rock. Amplification factors were determined by comparing characteristics of the surface and outcrop motions such as Fourier and response spectra. Computed amplification factors were correlated with V S30, V soil, and soft layer period, T = 4 H/ V soil. The results show clearly that the most reliable correlations for estimating the amplification of soft shallow surface layers less than 30 m are those based on V S30 and soft layer period, T.


Wear ◽  
1976 ◽  
Vol 37 (2) ◽  
pp. 299-312 ◽  
Author(s):  
C.J. Cudworth ◽  
G.R. Higginson
Keyword(s):  

1984 ◽  
Vol 75 ◽  
pp. 407-422
Author(s):  
William K. Hartmann

ABSTRACTThe nature of collisions within ring systems is reviewed with emphasis on Saturn's rings. The particles may have coherent icy cores and less coherent granular or frosty surface layers, consistent with thermal eclipse observations. Present-day collisions of such ring particles do not cause catastrophic fragmentation of the particles, although some minor surface erosion and reaccretion is possible. Evolution by collisional fragmentation is thus not as important as in the asteroid belt.


Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


Author(s):  
Virgil Peck ◽  
W. L. Carter

Any electron microscopical study of the morphology of bulk polymers has throughout the years been hampered by the lack of any real ability to produce meaningful surface variations for replication. True etching of polymers should show crystalline and amorphous regions in some form of relief. The use of solvents, acids, organic vapors, and inert ion bombardment to etch samples has proved to be useful only in limited applications. Certainly many interpretations of these results are subject to question.The recent use of a radiofrequency (R. F.) plasma of oxygen to degrade and remove organic material with only minor heating has opened a new possibility for etching polymers. However, rigid control of oxygen flow, time, current, and sample position are necessary in order to obtain reproducible results. The action is confined to surface layers; the molecular weight of the polymer residue after heavy etching is the same as the molecular weight of the polymer before attack, within the accuracy of measurement.


Author(s):  
H.W. Zandbergen ◽  
M.R. McCartney

Very few electron microscopy papers have been published on the atomic structure of the copper oxide based superconductor surfaces. Zandbergen et al. have reported that the surface of YBa2Cu3O7-δ was such that the terminating layer sequence is bulk-Y-CuO2-BaO-CuO-BaO, whereas the interruption at the grain boundaries is bulk-Y-CuO2-BaO-CuO. Bursill et al. reported that HREM images of the termination at the surface are in good agreement with calculated images with the same layer sequence as observed by Zandbergen et al. but with some oxygen deficiency in the two surface layers. In both studies only one or a few surfaces were studied.


Author(s):  
N. David Theodore ◽  
Andre Vantomme ◽  
Peter Crazier

Contact is typically made to source/drain regions of metal-oxide-semiconductor field-effect transistors (MOSFETs) by use of TiSi2 or CoSi2 layers followed by AI(Cu) metal lines. A silicide layer is used to reduce contact resistance. TiSi2 or CoSi2 are chosen for the contact layer because these silicides have low resistivities (~12-15 μΩ-cm for TiSi2 in the C54 phase, and ~10-15 μΩ-cm for CoSi2). CoSi2 has other desirable properties, such as being thermally stable up to >1000°C for surface layers and >1100°C for buried layers, and having a small lattice mismatch with silicon, -1.2% at room temperature. During CoSi2 growth, Co is the diffusing species. Electrode shorts and voids which can arise if Si is the diffusing species are therefore avoided. However, problems can arise due to silicide-Si interface roughness (leading to nonuniformity in film resistance) and thermal instability of the resistance upon further high temperature annealing. These problems can be avoided if the CoSi2 can be grown epitaxially on silicon.


Sign in / Sign up

Export Citation Format

Share Document