Controlled Surface Chemistry of Diamond/β-SiC Composite Films for Preferential Protein Adsorption

Langmuir ◽  
2014 ◽  
Vol 30 (4) ◽  
pp. 1089-1099 ◽  
Author(s):  
Tao Wang ◽  
Stephan Handschuh-Wang ◽  
Yang Yang ◽  
Hao Zhuang ◽  
Christoph Schlemper ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Giuseppina Raffaini

TiO2 is widely used in biomaterial implants. The topography, chemical and structural properties of titania surfaces are an important aspect to study. The size of TiO2 nanoparticles synthetized by sol–gel method can influence the responses in the biological environment, and by using appropriate heat treatments different contents of different polymorphs can be formed. Protein adsorption is a crucial step for the biological responses, involving, in particular, albumin, the most abundant blood protein. In this theoretical work, using molecular mechanics and molecular dynamics methods, the adsorption process of an albumin subdomain is reported both onto specific different crystallographic faces of TiO2 anatase and also on its ideal three-dimensional nanosized crystal, using the simulation protocol proposed in my previous theoretical studies about the adsorption process on hydrophobic ordered graphene-like or hydrophilic amorphous polymeric surfaces. The different surface chemistry of anatase crystalline faces and the nanocrystal topography influence the adsorption process, in particular the interaction strength and protein fragment conformation, then its biological activity. This theoretical study can be a useful tool to better understand how the surface chemistry, crystal structure, size and topography play a key role in protein adsorption process onto anatase surface so widely used as biomaterial.


2019 ◽  
Vol 6 (6) ◽  
pp. 1688-1703 ◽  
Author(s):  
Junyeol Kim ◽  
Kyle Doudrick

The adsorption and unfolding behavior of bovine serum albumin onto catalytic- and food-grade titanium dioxide nanoparticles is dependent on the surface chemistry of the nanoparticles and their environmental exposure history.


2012 ◽  
Vol 134 (4) ◽  
pp. 2139-2147 ◽  
Author(s):  
Carl D. Walkey ◽  
Jonathan B. Olsen ◽  
Hongbo Guo ◽  
Andrew Emili ◽  
Warren C. W. Chan

2020 ◽  
pp. 096739112096843
Author(s):  
Shih-Hang Chang ◽  
Ming-Han Hsieh

In this study, we firstly investigated the surface and protein adsorption properties of montmorillonite (MMT)/chitosan (CS) composite films with various MMT/CS weight ratios for metallic implants coating applications. Bicinchoninic acid (BCA) protein assay results show that the neat CS film exhibits a high concentration of bovine serum albumin (BSA) protein adhesion because the abundant carbonyl and amide functional groups on the surface of the CS film easily form hydrogen bonds with the copious carboxylic acid groups on the surface of the BSA protein. The MMT/CS composite films with MMT/CS = 3, 5, 8, and 10 possess a much lower BSA adhesion concentration than that of the neat CS film, as some of the carbonyl and amide functional groups on the surface of the composite films are replaced by the –Si–O–Si and –Al–O–Al groups. Among these MMT/CS composite films, the film with MMT/CS = 5 exhibits the lowest BSA adsorption concentration because it possesses a higher MMT content than those with MMT/CS = 1 and 3 and a smoother and non-porous surface than those with MMT/CS = 8 and 10. According to our results, MMT/CS composite films with appropriate MMT/CS weight ratios exhibit better surface and protein adsorption properties than neat CS for biomedical applications.


2009 ◽  
Vol 18 (5-8) ◽  
pp. 895-898 ◽  
Author(s):  
C. Popov ◽  
H. Vasilchina ◽  
W. Kulisch ◽  
F. Danneil ◽  
M. Stüber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document