Role of Nanomechanical Properties in the Tribological Performance of Phospholipid Biomimetic Surfaces

Langmuir ◽  
2008 ◽  
Vol 24 (16) ◽  
pp. 8765-8771 ◽  
Author(s):  
Ana-Maria Trunfio-Sfarghiu ◽  
Yves Berthier ◽  
Marie-Helene Meurisse ◽  
Jean-Paul Rieu
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2965
Author(s):  
Sandeep Agrawal ◽  
Nishant K. Singh ◽  
Rajeev Kumar Upadhyay ◽  
Gurminder Singh ◽  
Yashvir Singh ◽  
...  

In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.


2017 ◽  
Vol 61 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Nihat A. Isitman ◽  
András Kriston ◽  
Tibor Fülöp

2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuri M. Efremov ◽  
Svetlana L. Kotova ◽  
Anastasia A. Akovantseva ◽  
Peter S. Timashev

Abstract Background The nucleus, besides its functions in the gene maintenance and regulation, plays a significant role in the cell mechanosensitivity and mechanotransduction. It is the largest cellular organelle that is often considered as the stiffest cell part as well. Interestingly, the previous studies have revealed that the nucleus might be dispensable for some of the cell properties, like polarization and 1D and 2D migration. Here, we studied how the nanomechanical properties of cells, as measured using nanomechanical mapping by atomic force microscopy (AFM), were affected by the removal of the nucleus. Methods The mass enucleation procedure was employed to obtain cytoplasts (enucleated cells) and nucleoplasts (nuclei surrounded by plasma membrane) of two cell lines, REF52 fibroblasts and HT1080 fibrosarcoma cells. High-resolution viscoelastic mapping by AFM was performed to compare the mechanical properties of normal cells, cytoplasts, and nucleoplast. The absence or presence of the nucleus was confirmed with fluorescence microscopy, and the actin cytoskeleton structure was assessed with confocal microscopy. Results Surprisingly, we did not find the softening of cytoplasts relative to normal cells, and even some degree of stiffening was discovered. Nucleoplasts, as well as the nuclei isolated from cells using a detergent, were substantially softer than both the cytoplasts and normal cells. Conclusions The cell can maintain its mechanical properties without the nucleus. Together, the obtained data indicate the dominating role of the actomyosin cytoskeleton over the nucleus in the cell mechanics at small deformations inflicted by AFM.


2014 ◽  
Vol 966-967 ◽  
pp. 347-356
Author(s):  
Agnieszka Tomala ◽  
Aldara Naveira Suarez ◽  
Manel Rodríguez Ripoll

The use of different process media such as cutting fluids, coolants, honing oil and washing media in typical machining operations exceeds 5,000 m3 per year. These media support critical functions such as lubrication, corrosion protection, cleaning and cooling, and have an enormous effect on the manufacturing performance. The tribological properties of these media are improved by using additive molecules, which are physically or chemically adsorbed on the surface of tools and workpieces. The additive performance is especially important in water lubricated tribosystems, where the environment is highly corrosive. The role of corrosion inhibitors typically applied is to neutralize the pH of contaminants in the fluid. Ethanolamines and ethylamines are known as ligands which can form chelate bonds with metals via their amino, hydroxyl and deprotonated hydroxyl-groups. In tribology they are widely spread, as corrosion inhibitors and detergents especially for water based lubricants. This study inquires the tribological performance of amine-based solutions in two types of tribotesters which apply different contact conditions. The dissimilar behaviour under rolling and sliding contact is explained in terms of the structure of the adsorbed compounds. Understanding the performance of the first chemisorbed layers of additives on the workpiece provides essential information for optimizing lubrication in aqueous solutions.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1372
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Hun Guan Chuah

In recent years, the tribology field has expanded with the advent of nanolubrication. Nanolubricants are the name given to the dispersion of nanoparticles in a base oil, and has attracted researchers due to its potential application. In addition to being used in the tribology field, nanoparticles are also used for medical, space, and composites purposes. The addition of nanoparticles in base oils is promising because it enhances specific tribological characteristics including wear-resistance and friction, and the most important reason is that the majority of them are environmentally friendly. This paper reviews the tribological effect of various nanoparticles as lubricant additives. Parameters of nanoparticles that affect tribological performance, the technique to enhance stability, and lubrication mechanism that is currently believed to function will be delineated in detail. Moreover, this review facilitates an understanding of the role of various nanoparticles, which helps in developing and designing suitable nanolubricants for various applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeraj Dwivedi ◽  
Sushil Kumar ◽  
Hitendra K. Malik ◽  
C. M. S. Rauthan ◽  
O. S. Panwar

The role of sandwich Cu layer in and effect of self-bias on structural and nanomechanical properties of Cu/DLC bilayer films have been explored. Cu/DLC bilayer films were grown, under varied self-bias from −125 to −225 V, using hybrid system involving radio-frequency- (RF-) plasma-enhanced chemical vapor deposition and RF-sputtering units. Surface topography and mean roughness was studied by atomic force microscope and then correlated with mechanical properties. The addition of sandwich Cu layer in DLC reduces its residual stress and does not affect bilayer film hardness and elastic modulus. Load versus displacement was also employed to estimate various other mechanical parameters, which further correlated with self-bias and structural properties. These Cu/DLC bilayer films seem to be a potential candidate for various industrial applications such as hard and protective coating on cutting tools, solar cells, and wear resistance coating on magnetic storage media.


Sign in / Sign up

Export Citation Format

Share Document