Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks

1993 ◽  
Vol 26 (5) ◽  
pp. 1109-1119 ◽  
Author(s):  
G. Heinrich ◽  
T. A. Vilgis
1995 ◽  
Vol 68 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Gert Heinrich ◽  
Thomas A. Vilgis

Abstract The problem of polymer adsorption on carbon black surfaces is considered within the concept of disorder-induced localization of polymer chains on disordered or fractal surfaces. The model describes how physical adsorption properties are enhanced compared to the adsorption on a flat surface. The difference is based on the configurational entropy which is less restricted in the disordered case than in the flat case. In fact, the surface of the carbon black particles is disordered over certain length scales and several experimental techniques have shown that the particle surface is fractal. This fractal nature can be quantified by the surface spectral density and the noninteger fractal surface dimension. As a main consequence, the coupling between filler and polymer is caused by entanglements formed between tightly adsorbed bound rubber on the filler surface and the bulk rubber far removed from the surface. The corresponding density of couples is estimated for several filled polymer networks using tensile test results. The stress-strain relations used are based on a new rigorous molecular-statistical model of filled polymer networks with quenched topology that includes the entanglements within the mobile rubber phase (configurational tube-model).


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Author(s):  
Jipeng Guo ◽  
Chi-Hui Tsou ◽  
Yongqi Yu ◽  
Chin-San Wu ◽  
Xuemei Zhang ◽  
...  

1994 ◽  
Vol 29 (9) ◽  
pp. 2406-2416 ◽  
Author(s):  
S. W. Shang ◽  
J. W. Williams ◽  
K. -J. M. Söderholm

Sign in / Sign up

Export Citation Format

Share Document