Evaluation of Cellular Uptake and Gene Transfer Efficiency of Pegylated Poly-l-lysine Compacted DNA:  Implications for Cancer Gene Therapy

2006 ◽  
Vol 3 (6) ◽  
pp. 644-653 ◽  
Author(s):  
M. Walsh ◽  
M. Tangney ◽  
M. J. O'Neill ◽  
J. O. Larkin ◽  
D. M. Soden ◽  
...  
2002 ◽  
Vol 76 (6) ◽  
pp. 2753-2762 ◽  
Author(s):  
Victor W. van Beusechem ◽  
Jacques Grill ◽  
D. C. Jeroen Mastenbroek ◽  
Thomas J. Wickham ◽  
Peter W. Roelvink ◽  
...  

ABSTRACT The application of adenoviral vectors in cancer gene therapy is hampered by low receptor expression on tumor cells and high receptor expression on normal epithelial cells. Targeting adenoviral vectors toward tumor cells may improve cancer gene therapy procedures by providing augmented tumor transduction and decreased toxicity to normal tissues. Targeting requires both the complete abolition of native tropism and the addition of a new specific binding ligand onto the viral capsid. Here we accomplished this by using doubly ablated adenoviral vectors, lacking coxsackievirus-adenovirus receptor and αv integrin binding capacities, together with bispecific single-chain antibodies targeted toward human epidermal growth factor receptor (EGFR) or the epithelial cell adhesion molecule. These vectors efficiently and selectively targeted both alternative receptors on the surface of human cancer cells. Targeted doubly ablated adenoviral vectors were also very efficient and specific with primary human tumor specimens. With primary glioma cell cultures, EGFR targeting augmented the median gene transfer efficiency of doubly ablated adenoviral vectors 123-fold. Moreover, EGFR-targeted doubly ablated vectors were selective for human brain tumors versus the surrounding normal brain tissue. They transduced organotypic glioma and meningioma spheroids with efficiencies similar to those of native adenoviral vectors, while exhibiting greater-than-10-fold-reduced background levels on normal brain explants from the same patients. As a result, EGFR-targeted doubly ablated adenoviral vectors had a 5- to 38-fold-improved tumor-to-normal brain targeting index compared to native vectors. Hence, single-chain targeted doubly ablated adenoviral vectors are promising tools for cancer gene therapy. They should provide an improved therapeutic index with efficient tumor transduction and effective protection of normal tissue.


2002 ◽  
Vol 9 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Anders Høgset ◽  
Birgit Øvstebø Engesæter ◽  
Lina Prasmickaite ◽  
Kristian Berg ◽  
Øystein Fodstad ◽  
...  

Diseases ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 57 ◽  
Author(s):  
Chiaki Hidai ◽  
Hisataka Kitano

Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.


2002 ◽  
Vol 76 (20) ◽  
pp. 10437-10443 ◽  
Author(s):  
C. P. Rooney ◽  
G. M. Denning ◽  
B. P. Davis ◽  
D. M. Flaherty ◽  
J. A. Chiorini ◽  
...  

ABSTRACT Successfully targeting the airway epithelium is essential for gene therapy of some pulmonary diseases. However, the airway epithelium is resistant to virus-mediated gene transfer with commonly used vectors. Vectors that interact with endogenously expressed receptors on the apical surface significantly increase gene transfer efficiency. However, other endogenous components involved in host immunity may hinder virus-mediated gene transfer. We tested the effect of bronchoalveolar lavage liquid (BAL) from patients with cystic fibrosis (CF), BAL from subjects without CF (non-CF BAL), Pseudomonas aeruginosa-derived proteins, and an array of inflammatory proteins on gene transfer mediated by adeno-associated virus type 5 (AAV5) and adenovirus targeted to an apically expressed glycosylphosphatidylinositol-modified coxsackie-adenovirus receptor. We found that neither CF BAL nor its components had a significant effect on gene transfer to human airway epithelium by these vectors. Non-CF BAL significantly impaired adenovirus-mediated gene transfer. Removal of immunoglobulins in non-CF BAL restored gene transfer efficiency. As virus vectors are improved and mechanisms of humoral immunity are elucidated, barriers to successful gene therapy found in the complex environment of the human lung can be circumvented.


1999 ◽  
Vol 74 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Timothy J. Vanderkwaak ◽  
Minghui Wang ◽  
Jesús Gómez-Navarro ◽  
Claudine Rancourt ◽  
Igor Dmitriev ◽  
...  

2008 ◽  
Vol 15 (5) ◽  
pp. 297-297 ◽  
Author(s):  
W. Walther ◽  
I. Fichtner ◽  
D. Kobelt ◽  
R. Siegel ◽  
P. Schlag ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2039-2039
Author(s):  
Shuxian Song ◽  
James Harrang ◽  
Bryn Smith ◽  
Carol H. Miao

Abstract Hemophilia A is a genetic bleeding disorder resulted from a deficiency of blood clotting factor VIII. In order to develop the efficient approach to gene therapy for hemophilia A, we previously explored reporter gene transfer mediated by ultrasound (US) combined with microbubbles (MBs). It was demonstrated that US/MB can significantly enhance gene transfer efficiency and serve as an efficient non-viral physical delivery strategy. In this study, we further delivered a therapeutic FVIII plasmid into the livers of hemophilia A (HA) mice. In consideration of FVIII synthesis from multiple tissues/cell lines, we first explored the distribution of gene expression using a pGL4.13 [luc2/SV40] luciferase plasmid driven by a ubiquitous promoter. One day following gene transfer, hepatocytes and endothelia cells were isolated from treated lobes by liver perfusion and centrifuge method. Evaluation of luciferase levels in two cell populations indicated that luciferase predominantly expressed in hepatocytes (5.35´104 RLU/107 cells vs. 1.46´103 RLU/107 cells in endothelia cells). Furthermore, gene transfer of pGFP (driven by a ubiquitous CMV promoter) mediated by US/MB also showed fluorescence distribution mostly in hepatocytes. These results indicate that hepatocyte is the predominant site of gene expression following US/MB mediated gene transfer into the liver. Based on these results, a hepatocyte-specific human FVIII plasmid (pBS-HCRHP-hFVIII/N6A) was used for US/MB mediated gene transfer in HA mice. In the short-term experiment, FVIII activity levels of treated HA mice ranged from 4-40% of normal FVIII activity. To follow FVIII expression for longer term, HA mice were pretreated with IL-2/IL-2 mAb (JES6-1) complexes on day −5, −4, and −3 to prevent immune response. In addition, the mice were infused with normal mouse plasma and human FVIII protein prior to gene transfer to maintain hemostasis. Subsequently, FVIII plasmids and 5 Vol% NUVOX MBs were injected into the mouse liver under simultaneous US exposure (1.1MHz transducer H158A driven by a pulse generator and high-power radio frequency amplifier capable of generating up to 1000W). Blood and liver samples were collected at serial time points after treatment to determine FVIII activity in plasma and liver damage. Following gene transfer, 10-30% of FVIII activity was achieved on day 4 and persisted in the average level of 20% by day 28. In a separate long-term follow-up experiment (n=3), 2 of 3 mice still maintained 10-30% activity after 120 days. Both transaminase levels (alanine aminotransferase and aspartate aminotransferase) and histological examination showed that the procedure of plasmid/MBs portal-vein injection and pulse-train acoustic exposure produced transiently localized liver damages however the damages were repaired and the liver recovered rapidly. Phenotypic correction of HA mice was further examined by tail clip assay. Blood loss of US/MB treated mice was significantly reduced compared with naive HA mice. Furthermore, a novel plasmid encoding a B domain-deleted FVIII variant containing mutations of 10 amino acids in the A1 domain (BDDFVIII-X10, a kind gift from Weidong Xiao) was constructed. Preliminary results from ongoing study showed that the gene transfer efficiency could be further improved with better plasmid and more efficient immune modulation. Together all the results indicate that US/MB mediated gene transfer is highly promising for efficient and safe gene therapy of hemophilia A. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document