Hydrodesulfurization (HDS) Model Systems. Opening, Hydrogenation, and Hydrodesulfurization of Dibenzothiophene (DBT) at Iridium. First Case of Catalytic HDS of DBT in Homogeneous Phase

1995 ◽  
Vol 14 (5) ◽  
pp. 2342-2352 ◽  
Author(s):  
Claudio Bianchini ◽  
M. Victoria Jimenez ◽  
Andrea Meli ◽  
Simonetta Moneti ◽  
Francesco Vizza ◽  
...  
2018 ◽  
Vol 45 (4) ◽  
pp. 137-142
Author(s):  
A.E. Chalykh ◽  
V.K. Gerasimov ◽  
O.V. Gorshkova ◽  
V.V. Matveev

Methods for preparing specimens and for processing the results obtained are described. Carbon black of grades T1 and KhS-72, monodispersed polystyrene (molecular weight 200 kDa), polyethylene, polybutadiene rubber, polyisoprene rubber, styrene butadiene elastomer, and butyl rubber were investigated. Two methods were used to prepare filled specimens. In the first case (model systems), the filler and polymer were mixed via a 1–5% solution of polystyrene in toluene. The carbon black content in the suspensions was varied in the range 1–60 wt%. After mixing, the specimens were subjected to ultrasound treatment on a UZDM-2T disperser (44 kHz) for ~10 min. In the second case, sulphur vulcanisates were obtained by the standard procedure. The morphology was studied by transmission electron microscopy (EM-301 electron microscope, Japan) using thin films or etching in high-frequency oxygen discharge plasma on a vacuum reactor (Edwards, UK). A procedure for processing electron micrographs with the aim of obtaining information about local and global fractal dimensions of particle aggregates is described.


Author(s):  
G. Michel ◽  
G. P. Chini

This article illustrates the application of multiple scales analysis to two archetypal quasi-linear systems; i.e. to systems involving fast dynamical modes, called fluctuations, that are not directly influenced by fluctuation–fluctuation nonlinearities but nevertheless are strongly coupled to a slow variable whose evolution may be fully nonlinear. In the first case, fast waves drive a slow, spatially inhomogeneous evolution of their celerity field. Multiple scales analysis confirms that, although the energyE, the angular frequencyωand the modal structure of the waves evolve, the wave actionE/ωis conserved in the absence of forcing and dissipation. In the second system, the fast modes undergo an instability that is saturated through a feedback on the slow variable. A new multi-scale analysis is developed to treat this case. The key technical point, confirmed by the analysis, is that the fluctuation energy and mode structure evolve slowly to ensure that the slow field remains in a state of near marginal stability. These two model systems appear to be generic, being representative of many if not all quasi-linear systems. In each case, numerical simulations of both the full and reduced dynamical systems are performed to highlight the accuracy and efficiency of the multiple scales approach. Python codes are provided as electronic supplementary material.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


Author(s):  
K. Brasch ◽  
J. Williams ◽  
D. Gallo ◽  
T. Lee ◽  
R. L. Ochs

Though first described in 1903 by Ramon-y-Cajal as silver-staining “accessory bodies” to nucleoli, nuclear bodies were subsequently rediscovered by electron microscopy about 30 years ago. Nuclear bodies are ubiquitous, but seem most abundant in hyperactive and malignant cells. The best studied type of nuclear body is the coiled body (CB), so termed due to characteristic morphology and content of a unique protein, p80-coilin (Fig.1). While no specific functions have as yet been assigned to CBs, they contain spliceosome snRNAs and proteins, and also the nucleolar protein fibrillarin. In addition, there is mounting evidence that CBs arise from or are generated near the nucleolus and then migrate into the nucleoplasm. This suggests that as yet undefined links may exist, between nucleolar pre-rRNA processing events and the spliceosome-associated Sm proteins in CBs.We are examining CB and nucleolar changes in three diverse model systems: (1) estrogen stimulated chick liver, (2) normal and neoplastic cells, and (3) polyploid mouse liver.


Author(s):  
Yih-Tai Chen ◽  
Ursula Euteneuer ◽  
Ken B. Johnson ◽  
Michael P. Koonce ◽  
Manfred Schliwa

The application of video techniques to light microscopy and the development of motility assays in reactivated or reconstituted model systems rapidly advanced our understanding of the mechanism of organelle transport and microtubule dynamics in living cells. Two microtubule-based motors have been identified that are good candidates for motors that drive organelle transport: kinesin, a plus end-directed motor, and cytoplasmic dynein, which is minus end-directed. However, the evidence that they do in fact function as organelle motors is still indirect.We are studying microtubule-dependent transport and dynamics in the giant amoeba, Reticulomyxa. This cell extends filamentous strands backed by an extensive array of microtubules along which organelles move bidirectionally at up to 20 μm/sec (Fig. 1). Following removal of the plasma membrane with a mild detergent, organelle transport can be reactivated by the addition of ATP (1). The physiological, pharmacological and biochemical characteristics show the motor to be a cytoplasmic form of dynein (2).


Author(s):  
Ian M. Anderson ◽  
Arnulf Muan ◽  
C. Barry Carter

Oxide mixtures which feature a coexistence of phases with the wüstite and spinel structures are considered model systems for the study of solid-state reaction kinetics, phase boundaries, and thin-film growth, and such systems are especially suited to TEM studies. (In this paper, the terms “wüstite” and “spinel” will refer to phases of those structure types.) The study of wüstite-spinel coexistence has been limited mostly to systems near their equilibrium condition, where the assumptions of local thermodynamic equilibrium are valid. The cation-excess spinels of the type Ni2(1+x)Ti1-xO4, which reportedly exist only above 1375°C4, provide an excellent system for the study of wüstite-spinel coexistence under highly nonequilibrium conditions. The nature of these compounds has been debated in the literature. X-ray and neutron powder diffraction patterns have been used to advocate the existence of a single-phase, non- stoichiometric spinel. TEM studies of the microstructure have been used to suggest equilibrium coexistence of a stoichiometric spinel, Ni2TiO4, and a wüstite phase; this latter study has shown a coexistence of wüstite and spinel phases in specimens thought to have been composed of a single, non- stoichiometric spinel phase. The microstructure and nature of this phase coexistence is the focus of this study. Specimens were prepared by ball-milling a mixture of NiO and TiO2 powders with 10 wt.% TiO2. The mixture was fired in air at 1483°C for 5 days, and then quenched to room temperature. The aggregate thus produced was highly porous, and needed to be infiltrated prior to TEM sample preparation, which was performed using the standard techniques of lapping, dimpling, and ion milling.


2003 ◽  
Vol 8 (5) ◽  
pp. 4-12
Author(s):  
Lorne Direnfeld ◽  
James Talmage ◽  
Christopher Brigham

Abstract This article was prompted by the submission of two challenging cases that exemplify the decision processes involved in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides). In both cases, the physical examinations were normal with no evidence of illness behavior, but, based on their histories and clinical presentations, the patients reported credible symptoms attributable to specific significant injuries. The dilemma for evaluators was whether to adhere to the AMA Guides, as written, or to attempt to rate impairment in these rare cases. In the first case, the evaluating neurologist used alternative approaches to define impairment based on the presence of thoracic outlet syndrome and upper extremity pain, as if there were a nerve injury. An orthopedic surgeon who evaluated the case did not base impairment on pain and used the upper extremity chapters in the AMA Guides. The impairment ratings determined using either the nervous system or upper extremity chapters of the AMA Guides resulted in almost the same rating (9% vs 8% upper extremity impairment), and either value converted to 5% whole person permanent impairment. In the second case, the neurologist evaluated the individual for neuropathic pain (9% WPI), and the orthopedic surgeon rated the patient as Diagnosis-related estimates Cervical Category II for nonverifiable radicular pain (5% to 8% WPI).


Sign in / Sign up

Export Citation Format

Share Document