Comparative Proteomic Analysis of Primary Schwann Cells and a Spontaneously Immortalized Schwann Cell Line RSC 96: A Comprehensive Overview with a Focus on Cell Adhesion and Migration Related Proteins

2012 ◽  
Vol 11 (6) ◽  
pp. 3186-3198 ◽  
Author(s):  
Yuhua Ji ◽  
Mi Shen ◽  
Xin Wang ◽  
Shuqiang Zhang ◽  
Shu Yu ◽  
...  
1999 ◽  
Vol 267 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Eric Detrait ◽  
Sandra Laduron ◽  
Valérie Meremans ◽  
Annik Baron-Van Evercooren ◽  
Philippe van den Bosch de Aguilar ◽  
...  

2000 ◽  
Vol 20 (18) ◽  
pp. 6872-6881 ◽  
Author(s):  
Shinri Yayoshi-Yamamoto ◽  
Ichiro Taniuchi ◽  
Takeshi Watanabe

ABSTRACT We have isolated a cDNA, frl(formin-related gene in leukocytes), a novel mammalian member of the formin gene family. The frlcDNA encodes a 160-kDa protein, FRL, that possesses FH1, FH2, and FH3 domains that are well conserved among other Formin-related proteins. An FRL protein is mainly localized in the cytosol and is highly expressed in spleen, lymph node, and bone marrow cells. Formin-related genes and proteins have been reported to play crucial roles in morphogenesis, cell polarity, and cytokinesis through interaction with Rho family small GTPases. FRL binds to Rac at its N-terminal region including the FH3 domain and associates with profilin at the FH1 domain. In a macrophage cell line, P388D1, overexpression of a truncated form of FRL containing only the FH3 domain (FH3-FRL) strongly inhibited cell adhesion to fibronectin and migration upon stimulation with a chemokine. Moreover, expression of the truncated FH3-FRL protein resulted in apoptotic cell death of P388D1 cells, suggesting that the truncated FH3-FRL protein may interfere with signals of FRL. Overexpression in the P388D1 cells of full-length FRL or of the truncated protein containing the FH3 and FH1 domains, with simultaneous expression of the truncated FH3-FRL protein, blocked apoptotic cell death and inhibition of cell adhesion and migration. These results suggest that FRL may play a role in the control of reorganization of the actin cytoskeleton in association with Rac and also in the regulation of the signal for cell survival.


Author(s):  
Leila Mohammadi ◽  
Bashir Mosayyebi ◽  
Mahsa Imani ◽  
Mohammad Rahmati

Background: Aberrant expression of cell adhesion molecules and matrix metalloproteinase (MMPs) plays a pivotal role in tumor biological processes including progression and metastasis of cancer cells. Targeting these processes and detailed understanding of their underlying molecular mechanism is an essential step in cancer treatment. Dexamethasone (Dex) is a type of synthetic corticosteroid hormone used as adjuvant therapy in combination with current cancer treatments such as chemotherapy in order to alleviate its side effects like acute nausea and vomiting. Recent evidences have suggested that Dex may have antitumor characteristics. Objective: Dex affects the migration and adhesion of T47D breast cancer cells as well as cell adhesion molecules e.g., cadherin and integrin, and MMPs by regulating the expression levels of associated genes. Methods: In this study, we evaluated the cytotoxicity of Dex on the T47D breast cancer cell line through MTT assay. Cell adhesion assay and wound healing assay were performed to determine the impact of Dex on cell adhesion and cell migration, respectively. Moreover, real-time PCR was used to measure the levels of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9. Results: Dex decreased the viability of T47D cells in a time and dose-dependent manner. Cell adhesion and migration of T47D cells were reduced upon Dex treatment. The expression of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9 were altered in response to the Dex treatment. Conclusion: Our findings demonstrated that Dex may have a role in the prevention of metastasis in this cell line.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2623-2623
Author(s):  
Jessica Nunes ◽  
Ann Ventura ◽  
Kevan Zapolnik ◽  
Eileen Hu ◽  
Liwen Zhang ◽  
...  

Abstract Introduction: Sialic acid-binding immunoglobulin-like lectins (Siglec) are a group of lectins that regulate innate and adaptive immune function via glycan recognition. We and others have shown overexpression of Siglec-6, a member of Siglec family, on B cells from patients with chronic lymphocytic leukemia (CLL) compared to normal donor derived B cells. While placental expression of Siglec-6 has been shown to regulate invasion of trophoblast cells by binding to glycodelin, the biochemical role of Siglec-6 in CLL patients is not known. We describe here for the first time the functional relevance of Siglec-6 and its ligand sialyl Tn (sTn) in cell adhesion and migration in CLL. Biochemical mechanisms of Siglec-6 mediated cell adhesion and migration through DOCK8 dependent activation of Cdc42 associated with actin polymerization in CLL cells are presented. Further, the physiological relevance of Siglec-6/ DOCK8 axis in CLL cell adhesion and migration is validated using primary CLL patient samples, and genetically engineered loss of function Siglec-6 and DOCK8 mutant MEC1 CLL cell line. These studies thus elucidate the biological role of Siglec-6 in malignant CLL B cells and demonstrate therapeutic opportunities targeting Siglec-6 in CLL. Methods: Flow cytometry was used to analyze surface expression of Siglec-6 and sTn in CLL patients and normal donors. Transwell migration assay was used to assess in-vitro migratory role of Siglec-6. Mass spectrometry analysis was performed to identify Siglec-6 interacting proteins. CRISPR/Cas9 technique was used to generate knock-out (KO) cell lines for mechanistic studies. Phalloidin staining followed by confocal imaging was used to examine actin polymerization. Cdc42 activation was evaluated using a commercial kit which uses specialized PAK1-PBD agarose beads to pull down GTP-bound Cdc42. To study the in-vivo migratory role of Siglec-6, MEC1 CLL cell line or primary CLL cells were blocked with an isotype antibody or Siglec-6 targeted antibody and injected into the tail vein of NSG immunocompromised mice. 24 hrs later, mice were euthanized and spleens and BM were processed followed by flow cytometry analysis to determine the number of human CD45+ cells that have migrated. Results: We confirmed Siglec-6 overexpression on B cells from CLL patients when compared to B cells from normal donors. Interestingly, we also found expression of sTn on bone marrow stromal cells (BMSCs) derived from CLL patients but not healthy donors. Compared to Siglec-6 + CLL cells, Siglec-6 - CLL cells exhibited significant reduction in adhesion to (~50%) and migration towards (~50%) media containing sTn or sTn + CLL-BMSCs in cell adhesion and trans-well migration assays. Importantly, a Siglec-6 targeted antibody inhibited homing of Siglec-6 + MEC1 cells and primary CLL cells to the spleen and bone marrow in NSG mice (~35%). Mass spectrometry and co-immunoprecipitation analysis in MEC1 cells revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of Siglec-6 + MEC1 cells with sTn resulted in Cdc42 activation and WASP protein recruitment, which are both downstream targets of DOCK8 involved in cell migration. Further, sTn also promoted actin polymerization, an effect that was compromised in Siglec-6 or DOCK8 KO MEC1 cells. Additionally, cell fractionation experiments revealed that Siglec-6 + MEC1 cells had higher levels of DOCK8 at the cell membrane when compared to MEC1 Siglec-6 KO cells, indicating that Siglec-6 may be responsible for tethering DOCK8 to the cell membrane. Conclusions: We have for the first time shown Siglec-6 dependent recruitment of DOCK8 leading to migration and adhesion of B-CLL cells. Siglec-6 signals via DOCK8 to mediate sTn ligand dependent actin polymerization. We have also shown that sTn promotes Cdc42 activation and WASP protein recruitment which are both essential for actin polymerization. Moreover, all these effects were prevented by CRISPR/Cas9 mediated knock out of Siglec-6 or DOCK8 in MEC1 CLL cell line. Thus, Siglec-6 represents a CLL-specific target that opens up new therapeutic avenues to target only malignant B-CLL cells. Ongoing studies are focused on determining molecular mechanisms of Siglec-6 mediated regulation of actin polymerization and CLL-BMSC interactions. [This work was supported by NIH-R21 Grant and Pelotonia Idea grants. JN is a recipient of Pelotonia Graduate Fellowship] Disclosures Byrd: Newave: Membership on an entity's Board of Directors or advisory committees; Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria.


Hepatology ◽  
2005 ◽  
Vol 42 (4) ◽  
pp. 935-945 ◽  
Author(s):  
Xin Maggie Wang ◽  
Denise Ming Tse Yu ◽  
Geoffrey W. McCaughan ◽  
Mark D. Gorrell

2010 ◽  
Vol 95 (11) ◽  
pp. E342-E346 ◽  
Author(s):  
Jessica G. Cockburn ◽  
Douglas S. Richardson ◽  
Taranjit S. Gujral ◽  
Lois M. Mulligan

Context: The RET receptor tyrosine kinase is an important mediator of several human diseases, most notably of neuroendocrine cancers. These diseases are characterized by aberrant cell migration, a process tightly regulated by integrins. Objective: Our goals were to investigate the role of integrins in RET-mediated migration in two neoplastic cell models: the neural-derived cell line SH-SY5Y, and the papillary thyroid carcinoma cell line TPC-1. We also evaluated whether multiple integrin subunits have a role in RET-mediated cell migration. Design: We evaluated the expression and activation of integrins in response to RET activation using standard cell adhesion and migration (wound-healing) assays. We examined focal adhesion formation, using integrin-paxillin coimmunoprecipitations and immunofluorescence, as an indicator of integrin activity. Results: Our data indicate that β1 integrin (ITGB1) is expressed in both SH-SY5Y and TPC-1 cell lines and that these cells adhere strongly to matrices preferentially associated with ITGB1. We showed that RET can activate ITGB1, and that RET-induced cell adhesion and migration require ITGB1. Furthermore, we showed that β3 integrin (ITGB3) also plays a role in RET-mediated cell adhesion and migration in vitro and ITGB3 expression correlates with RET-mediated invasion in a mouse tumor xenograft model, suggesting that RET mediates the activity of multiple integrin subunits. Conclusions: Our data are the first to show that multiple integrin subunits contribute to cell adhesion and migration downstream of RET, suggesting that coordinated signaling through these pathways is important for cell interactions with the microenvironment during tumor invasion and progression.


2019 ◽  
Vol 175 ◽  
pp. 263-271 ◽  
Author(s):  
Guodong Cai ◽  
Shunye Pan ◽  
Nannan Feng ◽  
Hui Zou ◽  
Jianhong Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document