scholarly journals Development of a immobilized catalyst for heterogenous copper-catalyzed azide-alkyne cycloaddition of peptides under biocompatible conditions

Author(s):  
Rene Kandler ◽  
Samir Das ◽  
Arundhati Nag
Keyword(s):  
2021 ◽  
Author(s):  
Ruixiang Guo ◽  
Gang Wang ◽  
Wei Liu ◽  
Zibei Yao ◽  
Wei-Sheng Liu

Traditionally, the immobilized catalyst sacrifices a part of catalytic activity for its recyclability. To reproduce the catalytic activity of active specie, we construct a novel strategy called "adsorption-desorption-adsorption". Since the...


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2702
Author(s):  
Ivy L. Librando ◽  
Abdallah G. Mahmoud ◽  
Sónia A. C. Carabineiro ◽  
M. Fátima C. Guedes da Silva ◽  
Carlos F. G. C. Geraldes ◽  
...  

The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta- and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized and their catalytic activity was investigated for the low power microwave assisted one-pot azide–alkyne cycloaddition reaction in homogeneous aqueous medium to obtain disubstituted 1,2,3-triazoles. The most active catalysts were immobilized on activated carbon (AC), multi-walled carbon nanotubes (CNT), as well as surface functionalized AC and CNT, with the most efficient support being the CNT treated with nitric acid and NaOH. In the presence of the immobilized catalyst, several 1,4-disubstituted-1,2,3-triazoles were obtained from the reaction of terminal alkynes, organic halides and sodium azide in moderate yields up to 80%. Furthermore, the catalyzed reaction of terminal alkynes, formaldehyde and sodium azide afforded 2-hydroxymethyl-2H-1,2,3-triazoles in high yields up to 99%. The immobilized catalyst can be recovered and recycled through simple workup steps and reused up to five consecutive cycles without a marked loss in activity. The described catalytic systems proceed with a broad substrate scope, under microwave irradiation in aqueous medium and according to “click rules”.


2019 ◽  
Vol 19 (6) ◽  
pp. 1718-1725
Author(s):  
Amer S. El-Kalliny ◽  
Alireza H. Rivandi ◽  
Sibel Uzun ◽  
J. Ruud van Ommen ◽  
Henk W. Nugteren ◽  
...  

Abstract The rate of photocatalytic oxidation of contaminants in drinking water using an immobilized catalyst can be increased by properly designing the catalyst structure. By creating a solar reactor in which meshes coated with TiO2 were stacked, we demonstrated that degradation of humic acids with four superimposed stainless steel meshes was up to 3.4 times faster than in a single plate flat-bed reactor. Incorporation of TiO2 coated mesh structures resulted in a high specific photocatalytically active surface area with sufficient light penetration in the reactor, while the coated area for one mesh was 0.77 m2 per m2 projected area. This brought the photocatalytic efficiency of such reactors closer to that of dispersed-phase reactors, but without the complex separation of the very fine TiO2 particles from the treated water.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1460
Author(s):  
Mateusz Tataruch ◽  
Patrycja Wójcik ◽  
Agnieszka M. Wojtkiewicz ◽  
Katarzyna Zaczyk ◽  
Katarzyna Szymańska ◽  
...  

Cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans was successfully immobilized on 3-aminopropyltrimethoysilane functionalized mesoporous cellular foam (MCF) and Santa Barbara Amorphous (SBA-15) silica supports using adsorption or covalently with glutaraldehyde or divinyl sulfone linkers. The best catalyst, AcmB on MCF linked covalently with glutaraldehyde, retained the specific activity of the homogenous enzyme while exhibiting a substantial increase of the operational stability. The immobilized enzyme was used continuously in the fed-batch reactor for 27 days, catalyzing 1,2-dehydrogenation of androst-4-en-3-one to androst-1,4-dien-3-one with a final yield of 29.9 mM (8.56 g/L) and 99% conversion. The possibility of reuse of the immobilized catalyst was also demonstrated and resulted in a doubling of the product amount compared to that in the reference homogenous reactor. Finally, it was shown that molecular oxygen from the air can efficiently be used as an electron acceptor either reoxidizing directly the enzyme or the reduced 2,4-dichlorophenolindophenol (DCPIPH2).


1991 ◽  
Vol 55 (5) ◽  
pp. 1217-1223
Author(s):  
Akira Wadano ◽  
Teturo Ikeda ◽  
Motonobu Matumoto ◽  
Michio Himeno

Sign in / Sign up

Export Citation Format

Share Document