Use of Mixtures of Allelochemicals to Compare Bioassays Using Red Maple, Pin Cherry, and American Elm

1997 ◽  
Vol 23 (4) ◽  
pp. 1101-1117 ◽  
Author(s):  
Hélène Véronneau ◽  
Ann Francine Greer ◽  
Stéphane Daigle ◽  
Gilles Vincent
Keyword(s):  
1996 ◽  
Vol 13 (1) ◽  
pp. 16-18 ◽  
Author(s):  
Daniel M. Kowal ◽  
Thomas P. Husband

Abstract Our study examined the specific characteristics of 58 trees with excavated cavities used by birds in Rhode Island. Forty-five percent of cavity trees used by cavity-nesting birds were red maple and American elm. Forty-one percent of cavity trees had ≥ 2 cavities. Most cavities were ≤0.9 m from a decay entry point such as a broken top or branch. The characteristics of trees most often used by cavity-nesting birds included: dead; broken tops; > 80% of bark cover; and low resistance to heartwood decay and ice damage. Trees with these characteristics pose little competition to crop trees and should be left standing. North. J. Appl. For. 13(1):16-18.


2019 ◽  
Vol 34 (3) ◽  
pp. 331-341
Author(s):  
Brian R. Dintelmann ◽  
Michele R. Warmund ◽  
Mandy D. Bish ◽  
Kevin W. Bradley

AbstractAn experiment was conducted in 2017 and 2018 to determine the sensitivity of driftable rates of 2,4-D and dicamba with or without glyphosate on common ornamental, fruit, and nut species. Three driftable rates corresponding to ½, 1/20th, and 1/200th of the manufacturer’s labeled rate (1 × rate) of 2,4-D (1.09 kg ae ha−1), 2,4-D plus glyphosate (1.09 kg ae ha−1 plus 1.10 kg ae ha−1), dicamba (0.56 kg ae ha−1), and dicamba plus glyphosate (0.56 kg ae ha−1 plus 1.10 kg ae ha−1) were applied to apple, crabapple, dogwood, American elderberry, American elm, grapevine, hydrangea, red maple, pin oak, peach, pecan, eastern redbud, rose, red raspberry, strawberry, sweetgum, nannyberry viburnum, and black walnut plants. Visible estimates of injury were recorded 28 and 56 days after treatment (DAT). Plant measurements included leaf malformation, tree trunk growth, and shoot length. Across all species, the ½ × rate of 2,4-D plus glyphosate resulted in 61% injury 28 DAT, whereas the ½ × rate of dicamba plus glyphosate resulted in 51% injury. Across plant species and herbicides, ½ ×, 1/20 ×, and 1/200 × rates caused injury ranging from 3% to 100%, 0% to 66%, and 0% to 19%, respectively. Hydrangea was the least sensitive species; grapevine was most sensitive. Changes in plant measurements were dependent on the species and herbicide applied. Treatments at the ½ × or 1/20 × rate resulted in shoot length, leaf malformation, and trunk tree diameter differences for 11, 10, and 7 species, respectively, compared with nontreated plants. Collectively, the measurements and visual injury assessments indicated apple, red maple, peach, and pin oak were more sensitive to treatments containing dicamba, whereas black walnut, grapevine, and American elm were more sensitive to 2,4-D. Although the 1/200 × rates of 2,4-D and dicamba did not result in changes to plant measurements, obvious injury symptoms were observed, which could render these plants unsalable.


Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


Rhodora ◽  
10.3119/15-17 ◽  
2016 ◽  
Vol 118 (974) ◽  
pp. 189-205
Author(s):  
Kellie D. Adkins ◽  
Judy A. Chang ◽  
Lee A. Danels ◽  
LeAra M. DeBruhl ◽  
Mark M. Ellison ◽  
...  

2020 ◽  
Vol 52 (3) ◽  
pp. 292-297
Author(s):  
Tara Lee Bal ◽  
Katherine Elizabeth Schneider ◽  
Dana L. Richter

1990 ◽  
Vol 20 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
F. A. Bazzaz ◽  
J. S. Coleman ◽  
S. R. Morse

We examined how elevated CO2 affected the growth of seven co-occurring tree species: American beech (Fagusgrandifolia Ehrh.), paper birch (Betulapapyrifera Marsh.), black cherry (Prunusserotina Ehrh.), white pine (Pinusstrobus L.), red maple (Acerrubrum L.), sugar maple (Acersaccharum Marsh.), and eastern hemlock (Tsugacanadensis (L.) Carr). We also tested whether the degree of shade tolerance of species and the age of seedlings affected plant responses to enhanced CO2 levels. Seedlings that were at least 1 year old, for all species except beech, were removed while dormant from Harvard Forest, Petersham, Massachusetts. Seeds of red maple and paper birch were obtained from parent trees at Harvard Forest, and seeds of American beech were obtained from a population of beeches in Nova Scotia. Seedlings and transplants were grown in one of four plant growth chambers for 60 d (beech, paper birch, red maple, black cherry) or 100 d (white pine, hemlock, sugar maple) under CO2 levels of 400 or 700 μL•L−1. Plants were then harvested for biomass and growth determinations. The results showed that the biomass of beech, paper birch, black cherry, sugar maple, and hemlock significantly increased in elevated CO2, but the biomass of red maple and white pine only marginally increased in these conditions. Furthermore, there were large differences in the magnitude of growth enhancement by increased levels of CO2 between species, so it seems reasonable to predict that one consequence of rising levels of CO2 may be to increase the competitive ability of some species relative to others. Additionally, the three species exhibiting the largest increase in growth with increased CO2 concentrations were the shade-tolerant species (i.e., beech, sugar maple, and hemlock). Thus, elevated CO2 levels may enhance the growth of relatively shade-tolerant forest trees to a greater extent than growth of shade-intolerant trees, at least under the light and nutrient conditions of this experiment. We found no evidence to suggest that the age of tree seedlings greatly affected their response to elevated CO2 concentrations.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2487
Author(s):  
Geeta Pokhrel ◽  
Yousoo Han ◽  
Douglas J. Gardner

The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood–plastic composites (WPCs). Scientific research on wood flour production from mill residues is limited. One of the greatest costs involved in the supply chain of WPCs manufacturing is the transportation cost. Wood flour, constrained by low bulk densities, is commonly transported by truck trailers without attaining allowable weight limits. Because of this, shipping costs often exceed the material costs, consequently increasing raw material costs for WPC manufacturers and the price of finished products. A bulk density study of wood flour (190–220 kg/m3) and wood pellets (700–750 kg/m3) shows that a tractor-trailer can carry more than three times the weight of pellets compared to flour. Thus, this study focuses on exploring the utilization of mill residues from four wood species in Maine to produce raw materials for manufacturing WPCs. Two types of raw materials for the manufacture of WPCs, i.e., wood flour and wood pellets, were produced and a study of their properties was performed. At the species level, red maple 40-mesh wood flour had the highest bulk density and lowest moisture content. Spruce-fir wood flour particles were the finest (dgw of 0.18 mm). For all species, the 18–40 wood flour mesh size possessed the highest aspect ratio. Similarly, on average, wood pellets manufactured from 40-mesh particles had a lower moisture content, higher bulk density, and better durability than the pellets from unsieved wood flour. Red maple pellets had the lowest moisture content (0.12%) and the highest bulk density (738 kg/m3). The results concluded that the processing of residues into wood flour and then into pellets reduced the moisture content by 76.8% and increased the bulk density by 747%. These material property parameters are an important attempt to provide information that can facilitate the more cost-efficient transport of wood residue feedstocks over longer distances.


Sign in / Sign up

Export Citation Format

Share Document