Calculation of a Temperature Error by the Conjugate Equation

2004 ◽  
Vol 77 (1) ◽  
pp. 171-176 ◽  
Author(s):  
A. K. Alekseev
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1700
Author(s):  
Anca Mihaela Vasile (Dragan) ◽  
Alina Negut ◽  
Adrian Tache ◽  
Gheorghe Brezeanu

An EEPROM (electrically erasable programmable read-only memory) reprogrammable fuse for trimming a digital temperature sensor is designed in a 0.18-µm CMOS EEPROM. The fuse uses EEPROM memory cells, which allow multiple programming cycles by modifying the stored data on the digital trim codes applied to the thermal sensor. By reprogramming the fuse, the temperature sensor can be adjusted with an increased trim variation in order to achieve higher accuracy. Experimental results for the trimmed digital sensor showed a +1.5/−1.0 ℃ inaccuracy in the temperature range of −20 to 125 ℃ for 25 trimmed DTS samples at 1.8 V by one-point calibration. Furthermore, an average mean of 0.40 ℃ and a standard deviation of 0.70 ℃ temperature error were obtained in the same temperature range for power supply voltages from 1.7 to 1.9 V. Thus, the digital sensor exhibits similar performances for the entire power supply range of 1.7 to 3.6 V.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


2021 ◽  
Vol 263 ◽  
pp. 105817
Author(s):  
Jie Yang ◽  
Qingquan Liu ◽  
Gaoying Chen ◽  
Xuan Deng ◽  
Li Zhang

1965 ◽  
Author(s):  
L. Mackey ◽  
H. Kirschbaum

2018 ◽  
Vol 38 (5) ◽  
pp. 408-410 ◽  
Author(s):  
A. N. Polyakov ◽  
A. N. Goncharov ◽  
S. V. Kamenev

2021 ◽  
Author(s):  
Bai-Dong Zheng ◽  
Wei Liu ◽  
Ming Lv ◽  
Rui Wang ◽  
Hong-de Dai

Author(s):  
Р.Ю. Кузьменко ◽  
И.И. Таболин ◽  
А.О. Тищенко ◽  
А.Д. Данилов

Приводится методика программно-аппаратного способа компенсации теплового дрейфа напряжения, возникающего в измерительных каналах резистивных датчиков давления и температуры в блоке управления зарядно-разрядным устройством никель-водородной аккумуляторной батареи. Рассмотрена проблема повышения точности и надежности измерения контролируемых параметров для более точного управления режимами батареи в системе энергоснабжения при колебаниях температуры окружающей среды. Показана функциональная схема тракта преобразования аналогового сигнала в цифровую форму с использованием встроенного аналого-цифрового преобразователя микроконтроллера. Приведены экспериментальные данные исследований влияния температуры на точность измерения сигналов, а также графические иллюстрации максимальной приведенной погрешности 40 каналов измерения. Исследован разброс характеристик температурных датчиков, реализованных в кристаллах нескольких микроконтроллеров. На основании полученных данных выявлены узлы и элементы, вносящие максимальную температурную погрешность в каналы измерения датчиков давления и температуры аккумуляторной батареи. Разработана методика для программно-аппаратной компенсации температурной погрешности преобразования сигналов датчиков. Описаны алгоритм и условия практической реализации метода компенсации суммарной погрешности канала измерения с использованием аналого-цифрового преобразователя микроконтроллера. Проведена экспериментальная оценка примененного метода расчета в узле формирования телеметрии управления блока электроники, предназначенного для преобразования аналоговых сигналов с датчиков давления и температуры в цифровой код The article presents the method of hardware-software compensation of thermal voltage drift in the measuring channels of resistive pressure and temperature sensors in the control unit of the charging and discharging device of a nickel-hydrogen battery. We considered the problem of increasing the accuracy and reliability of the measurement of controlled parameters for more precise control of the operating modes of the batteries in the power supply system when the ambient temperature changes. We show the functional diagram of the path for converting an analog signal into a digital form using the built-in analog-to-digital converter of the microcontroller. We present experimental data on the influence of temperature on the accuracy of signal measurement, as well as graphic illustrations of the maximum reduced error of 40 measuring channels. We investigated the spread of the characteristics of temperature sensors implemented in the crystals of several microcontrollers. Based on the obtained data, we determined the nodes and elements that make up the maximum temperature error in the measurement channels of the pressure and temperature sensors of the battery. We developed a method of hardware-software compensation of the temperature error of the sensor signal conversion. Here we describe the algorithm and conditions of practical implementation of the method of compensation of the total error of the measuring channel using the analog-to-digital converter of the microcontroller. We carried out an experimental evaluation of the applied calculation method in the telemetry generation unit of the electronics unit designed to convert analog signals of pressure and temperature sensors into a digital code


2019 ◽  
Vol 48 (12) ◽  
pp. 1206002-1206002
Author(s):  
Chun-fu HUANG Chun-fu HUANG ◽  
An LI An LI ◽  
Fang-jun QIN Fang-jun QIN ◽  
Zhi WANG Zhi WANG

Sign in / Sign up

Export Citation Format

Share Document