N200 in the Eriksen-Task: Inhibitory Executive Processes?

2000 ◽  
Vol 14 (4) ◽  
pp. 218-225 ◽  
Author(s):  
Martin Heil ◽  
Allen Osman ◽  
Juliane Wiegelmann ◽  
Bettina Rolke ◽  
Erwin Hennighausen

Abstract Event-related potentials were recorded (N = 18) in a hybrid go/no-go Eriksen flanker task to study the neural correlates of response inhibition. Three letters were assigned to either a left-hand, a right-hand, or a no-go response. These three letters appeared either as targets signaling the assigned response or as flankers surrounding the target. The lateralized readiness potentials revealed erroneous cortical response priming on go trials, in which the target and flankers were assigned to different hands, as well as on no-go trials, in which the flankers primed one of the two hands. Exactly these two conditions were accompanied by a fronto-central amplitude modulation of the N200, suggesting that this ERP component may reflect inhibitory executive functions. The data replicate and extend recent studies by Kopp, Rist, and Mattler (1996) and Kopp, Mattler, Goertz, and Rist (1996) .

2003 ◽  
Vol 17 (2) ◽  
pp. 69-86 ◽  
Author(s):  
Claudio Babiloni ◽  
Fabio Babiloni ◽  
Filippo Carducci ◽  
Febo Cincotti ◽  
Claudio Del Percio ◽  
...  

Abstract Event-related desynchronization/synchronization (ERD/ERS) at alpha (10Hz), beta (20Hz), and gamma (40Hz) bands and movement-related potentials (MRPs) were investigated in right-handed subjects who were “free” to decide the side of unilateral finger movements (“fixed” side as a control). As a novelty, this “multi-modal” EEG analysis was combined with the evaluation of involuntary mirror movements, taken as an index of “bimanual competition.” A main issue was whether the decision regarding the hand to be moved (“free” movements) could modulate ERD/ERS or MRPs overlying sensorimotor cortical areas typically involved in bimanual tasks. Compared to “fixed” movements, “free” movements induced the following effects: (1) more involuntary mirror movements discarded from EEG analysis; (2) stronger vertex MRPs (right motor acts); (3) a positive correlation between these potentials and the number of involuntary mirror movements; (4) gamma ERS over central areas; and (5) preponderance of postmovement beta ERS over left central area (dominant hemisphere). These results suggest that ERD/ERS and MRPs provide complementary information on the cortical processes belonging to a lateralized motor act. In this context, the results on vertex MRPs would indicate a key role of supplementary/cingulate motor areas not only for bimanual coordination but also for the control of “bimanual competition” and involuntary mirror movements.


Author(s):  
Vesa Putkinen ◽  
Mari Tervaniemi

Studies conducted during the last three decades have identified numerous differences between musicians and non-musicians in neural correlates of sensory, motor, and higher-order cognitive functions. Research employing event-related potentials/fields has been particularly important in this framework. This chapter reviews the evidence that has emerged from these studies with emphasis on longitudinal studies comparing functional brain development in children taking music lessons and those engaged in non-musical activities. The literature provides empirical and theoretical grounds for concluding that musical training enhances sound encoding skills that are relevant for both music and speech processing. The question whether the benefits of musical training transfer to more distantly related cognitive functions remains controversial, however. Finally, it appears likely that training-induced plasticity alone does not account for the differences in brain function between musicians and non-musicians and, conversely, that predisposing factors also play a role.


2004 ◽  
Vol 26 (2) ◽  
pp. 317-337 ◽  
Author(s):  
Tsung-Min Hung ◽  
Thomas W. Spalding ◽  
D. Laine Santa Maria ◽  
Bradley D. Hatfield

Motor readiness, visual attention, and reaction time (RT) were assessed in 15 elite table tennis players (TTP) and 15 controls (C) during Posner’s cued attention task. Lateralized readiness potentials (LRP) were derived from contingent negative variation (CNV) at Sites C3 and C4, elicited between presentation of directional cueing (S1) and the appearance of the imperative stimulus (S2), to assess preparation for hand movement while P1 and N1 component amplitudes were derived from occipital event-related potentials (ERPs) in response to S2 to assess visual attention. Both groups had faster RT to validly cued stimuli and slower RT to invalidly cued stimuli relative to the RT to neutral stimuli that were not preceded by directional cueing, but the groups did not differ in attention benefit or cost. However, TTP did have faster RT to all imperative stimuli; they maintained superior reactivity to S2 whether preceded by valid, invalid, or neutral warning cues. Although both groups generated LRP in response to the directional cues, TTP generated larger LRP to prepare the corresponding hand for movement to the side of the cued location. TTP also had an inverse cueing effect for N1 amplitude (i.e., amplitude of N1 to the invalid cue > amplitude of N1 to the valid cue) while C visually attended to the expected and unexpected locations equally. It appears that TTP preserve superior reactivity to stimuli of uncertain location by employing a compensatory strategy to prepare their motor response to an event associated with high probability, while simultaneously devoting more visual attention to an upcoming event of lower probability.


2018 ◽  
Vol 12 ◽  
Author(s):  
Alexander Heilinger ◽  
Rupert Ortner ◽  
Vincenzo La Bella ◽  
Zulay R. Lugo ◽  
Camille Chatelle ◽  
...  

Patients with locked-in syndrome (LIS) are typically unable to move or communicate and can be misdiagnosed as patients with disorders of consciousness (DOC). Behavioral assessment scales are limited in their ability to detect signs of consciousness in this population. Recent research has shown that brain-computer interface (BCI) technology could supplement behavioral scales and allows to establish communication with these severely disabled patients. In this study, we compared the vibro-tactile P300 based BCI performance in two groups of patients with LIS of different etiologies: stroke (n = 6) and amyotrophic lateral sclerosis (ALS) (n = 9). Two vibro-tactile paradigms were administered to the patients to assess conscious function and command following. The first paradigm is called vibrotactile evoked potentials (EPs) with two tactors (VT2), where two stimulators were placed on the patient’s left and right wrist, respectively. The patients were asked to count the rare stimuli presented to one wrist to elicit a P300 complex to target stimuli only. In the second paradigm, namely vibrotactile EPs with three tactors (VT3), two stimulators were placed on the wrists as done in VT2, and one additional stimulator was placed on his/her back. The task was to count the rare stimuli presented to one wrist, to elicit the event-related potentials (ERPs). The VT3 paradigm could also be used for communication. For this purpose, the patient had to count the stimuli presented to the left hand to answer “yes” and to count the stimuli presented to the right hand to answer “no.” All patients except one performed above chance level in at least one run in the VT2 paradigm. In the VT3 paradigm, all 6 stroke patients and 8/9 ALS patients showed at least one run above chance. Overall, patients achieved higher accuracies in VT2 than VT3. LIS patients due to ALS exhibited higher accuracies that LIS patients due to stroke, in both the VT2 and VT3 paradigms. These initial data suggest that controlling this type of BCI requires specific cognitive abilities that may be impaired in certain sub-groups of severely motor-impaired patients. Future studies on a larger cohort of patients are needed to better identify and understand the underlying cortical mechanisms of these differences.


2009 ◽  
Vol 21 (7) ◽  
pp. 1435-1446 ◽  
Author(s):  
Dominique Lamy ◽  
Moti Salti ◽  
Yair Bar-Haim

The aim of the present study was to dissociate the ERP (Event Related Potentials) correlates of subjective awareness from those of unconscious perception. In a backward masking paradigm, participants first produced a forced-choice response to the location of a liminal target presented for an individually calibrated duration, and then reported on their subjective awareness of the target's presence. We recorded (Event-Related Potentials) ERPs and compared the ERP waves when observers reported being aware vs. unaware of the target but localized it correctly, thereby isolating the neural correlates of subjective awareness while controlling for differences in objective performance. In addition, we compared the ERPs when participants were subjectively unaware of the target's presence and localized it correctly versus incorrectly, thereby isolating the neural correlates of unconscious perception. All conditions involved stimuli that were physically identical and were presented for the same duration. Both behavioral measures were associated with modulation of the amplitude of the P3 component of the ERP. Importantly, this modulation was widely spread across all scalp locations for subjective awareness, but was restricted to the parietal electrodes for unconscious perception. These results indicate that liminal stimuli that do not affect performance undergo considerable processing and that subjective awareness is associated with a late wave of activation with widely distributed topography.


Author(s):  
Pierre Cutellic

AbstractThis paper focuses on the application of visual Event-Related Potentials (ERP) in better generalisations for design and architectural modelling. It makes use of previously built techniques and trained models on EEG signals of a singular individual and observes the robustness of advanced classification models to initiate the development of presentation and classification techniques for enriched visual environments by developing an iterative and generative design process of growing shapes. The pursued interest is to observe if visual ERP as correlates of visual discrimination can hold in structurally similar, but semantically different, experiments and support the discrimination of meaningful design solutions. Following bayesian terms, we will coin this endeavour a Design Belief and elaborate a method to explore and exploit such features decoded from human visual cognition.


Author(s):  
Tania Moretta ◽  
Giulia Buodo

AbstractGiven the current literature debate on whether or not Problematic Social Network Sites Use (PSNSU) can be considered a behavioral addiction, the present study was designed to test whether, similarly to addictive behaviors, PSNSU is characterized by a deficit in inhibitory control in emotional and addiction-related contexts. Twenty-two problematic Facebook users and 23 nonproblematic users were recruited based on their score on the Problematic Facebook Use Scale. The event-related potentials were recorded during an emotional Go/Nogo Task, including Facebook-related, unpleasant, pleasant, and neutral pictures. The amplitudes of the Nogo-N2 and the Nogo-P3 were computed as measures of the detection of response conflict and response inhibition, respectively. Reaction times and accuracy also were measured. The results showed that problematic users were less accurate on both Go and Nogo trials than nonproblematic users, irrespective of picture content. For problematic users only, the Nogo-P3 amplitude was lower to Facebook-related, pleasant, and neutral than to unpleasant stimuli, suggesting less efficient inhibition with natural and Facebook-related rewards. Of note, all participants were slower to respond to Facebook-related and pleasant Go trials compared with unpleasant and neutral pictures. Consistently, the Nogo-N2 amplitude was larger to Facebook-related than all other picture contents in both groups. Overall, the findings suggest that PSNSU is associated with reduced inhibitory control. These results should be considered in the debate about the neural correlates of PSNSU, suggesting more similarities than differences between PSNSU and addictive behaviors.


2011 ◽  
Vol 23 (6) ◽  
pp. 1405-1418 ◽  
Author(s):  
Giulia Galli ◽  
Leun J. Otten

It is unclear how neural correlates of episodic memory retrieval differ depending on the type of material that is retrieved. Here, we used a source memory task to compare electrical brain activity for the recollection of three types of stimulus material. At study, healthy adults judged how well visually presented objects, words, and faces fitted with paired auditorily presented names of locations. At test, only visual stimuli were presented. The task was to decide whether an item had been presented earlier and, if so, what location had been paired with the item. Stimulus types were intermixed across trials in Experiment 1 and presented in separate study–test lists in Experiment 2. A graded pattern of memory performance was observed across objects, words, and faces in both experiments. Between 300 and 500 msec, event-related potentials for recollected objects and faces showed a more frontal scalp distribution compared to words in both experiments. Later in the recording epoch, all three stimulus materials elicited recollection effects over left posterior scalp sites. However, these effects extended more anteriorly for objects and faces when stimulus categories were blocked. These findings demonstrate that the neural correlates of recollection are material specific, the crucial difference being between pictorial and verbal material. Faces do not appear to have a special status. The sensitivity of recollection effects to the kind of experimental design suggests that, in addition to type of stimulus material, higher-level control processes affect the cognitive and neural mechanisms underlying episodic retrieval.


Sign in / Sign up

Export Citation Format

Share Document