scholarly journals Three-dimensional numerical simulation of fluid flow and heat transport within the Barbados Ridge accretionary complex

2003 ◽  
Vol 108 (B12) ◽  
Author(s):  
Paula A. Cutillo
Author(s):  
Siyue Xiong ◽  
Xueye Chen

Abstract In this paper, We arrange the obstacles based on the Koch fractal principle (OKF) in the micromixer. By changing the fluid flow and folding the fluid, a better mixing performance is achieved. We improve the mixing efficiency by placing OKF and changing the position of OKF, then we studied the influence of the number of OKF and the height of the micromixer on the mixing performance. The results show that when eight OKF are staggered in the microchannel and the height is 0.2 mm, the mixing efficiency of the OKF micromixer can reach 97.1%. Finally, we compared the velocity cross section and velocity streamline of the fluid, and analyzed the influence of OKF on the concentration trend. Through analysis, it is concluded that OKF can generate chaotic convection in the fluid, and enhance the mixing of fluids by generating vortices and folding the fluid. It can effectively improve the mixing efficiency of the micromixer.


2021 ◽  
Vol 9 ◽  
Author(s):  
Houjun Gong ◽  
Mengqi Wu

Marine reactors are subjected to additional motions due to ocean conditions. These additional motions will cause large fluctuation of flow rate and change the coolant flow field, making the system unstable. Therefore, in order to understand the effect of oscillating motion on the flow characteristics, a numerical simulation of fluid flow is carried out based on a full-scale three-dimensional oscillating marine reactor. In this study, the resistance coefficients of the lattice, rod buddle and steam generator are fitted, and the distribution of flow rate, velocity as well as pressure in different regions is investigated through the standard model. After additional oscillation is introduced, the flow field in an oscillating reactor is presented and the effect of oscillating angle and elevation on the flow rate is investigated. Results show that the oscillating motion can greatly change the flow field in the reactor; most of the coolant circulates in the downcommer and lower head with only a small amount of coolant entering the core; the flow fluctuation period is consistent with the oscillating period, and the flow variation patterns under different oscillating conditions are basically the same; since the flow amplitude is related to oscillating speed, the amplitude of flow rate rises when decreasing the maximum oscillating angle; the oscillating elevation has little effect on the flow rate.


Sign in / Sign up

Export Citation Format

Share Document