scholarly journals Estimation of the all-wave urban surface radiation balance by use of ASTER multispectral imagery and in situ spatial data

2003 ◽  
Vol 108 (D18) ◽  
Author(s):  
Nektarios Chrysoulakis
2020 ◽  
Author(s):  
Robert Weller ◽  
Christian Lanconelli ◽  
Martin Wild ◽  
Joerg Trenmann

<p>In-situ shortwave or solar radiation and longwave or thermal radiation are observed at the earth’s surface on both the land and the ocean.  In addition, satellites are used to develop fields of surface radiation balance.  Planning for the Global Ocean Observing System (GOOS) and the Global Climate Observing System (GCOS) has identified surface heat flux, including the radiative fluxes, as an Essential Ocean Variable (EOV) and Essential Climate Variable (ECV), respectively.  The GOOS and GCOS requirements for surface radiative fluxes (spatial and temporal sampling, accuracies) are summarized here.  Surface radiation sites will continue to be sparse in the future, especially in the ocean; and satellite-derived products developed in concert with in-situ observing system will be important.  To make better progress towards meeting those requirements, we propose the goal of establishing dialog across the different methods of in-situ observing surface radiation and with the remote sensing community.  Objectives of the effort would include sharing knowledge and experience of how to make the observations, documentation of calibration methods, and assessment of the uncertainties to be associated with the different observing methods.  The resulting metadata and quantitative understanding of the different approaches would support improved combination of surface radiation observations across land and sea into homogeneous products at global scale.  At the same time, improved in-situ sampling would help assess and validate climate models and contribute to our understanding of the earth’s energy balance.  We review here the different observing methods now in use on land and at sea and discuss the challenges faced in making the observations.  We also propose future field inter-comparison and standardization of calibration methods to better establish the accuracy and comparability of surface radiation observations on land and at sea.</p>


2016 ◽  
Vol 10 (2) ◽  
pp. 613-622 ◽  
Author(s):  
Wiley Steven Bogren ◽  
John Faulkner Burkhart ◽  
Arve Kylling

Abstract. We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.


2021 ◽  
Author(s):  
Georges Djoumna ◽  
Sebastian H. Mernild ◽  
David Holland

<p>The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG) and Jakobshavn Isbræ (JI) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal   a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction.  CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m-2 and 1.9 ± 15.1 W m−2 at JI and HG.  CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.</p>


Cirrus ◽  
2002 ◽  
Author(s):  
Kenneth Sassen ◽  
Gerald Mace

Cirrus clouds have only recently been recognized as having a significant influence on weather and climate through their impact on the radiative energy budget of the atmosphere. In addition, the unique difficulties presented by the study of cirrus put them on the “back burner” of atmospheric research for much of the twentieth century. Foremost, because they inhabit the frigid upper troposphere, their inaccessibility has hampered intensive research. Other factors have included a lack of in situ instrumentation to effectively sample the clouds and environment, and basic uncertainties in the underlying physics of ice cloud formation, growth, and maintenance. Cloud systems that produced precipitation, severe weather, or hazards to aviation were deemed more worthy of research support until the mid- 1980s. Beginning at this time, however, major field research programs such as the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE; Cox et al. 1987), International Cirrus Experiment (ICE; Raschke et al. 1990), Experimental Cloud Lidar Pilot Study (ECLIPS; Platt et al. 1994), and the Atmospheric Radiation Measurement (ARM) Program (Stokes and Schwartz 1994) have concentrated on cirrus cloud research, relying heavily on ground-based remote sensing observations combined with research aircraft. What has caused this change in research emphasis is an appreciation for the potentially significant role that cirrus play in maintaining the radiation balance of the earth-atmosphere system (Liou 1986). As climate change issues were treated more seriously, it was recognized that the effects, or feedbacks, of extensive high-level ice clouds in response to global warming could be pivotal. This fortunately came at a time when new generations of meteorological instrumentation were becoming available. Beginning in the early 1970s, major advancements were made in the fields of numerical cloud modeling and cloud measurements using aircraft probes, satellite multispectral imaging, and remote sensing with lidar, short-wavelength radar, and radiometers, all greatly facilitating cirrus research. Each of these experimental approaches have their advantages and drawbacks, and it should also be noted that a successful cloud modeling effort relies on field data for establishing boundary conditions and providing case studies for validation. Although the technologies created for in situ aircraft measurements can clearly provide unique knowledge of cirrus cloud thermodynamic and microphysical properties (Dowling and Radke 1990), available probes may suffer from limitations in their response to the wide range of cirrus particles and actually sample a rather small volume of cloud during any mission.


A highly significant decrease in the annual sums of global irradiance reaching the surface of the Arctic, averaging 0.36 W m -2 per year, was derived from an analysis of 389 complete years of measurement, beginning in 1950, at 22 pyranometer stations within the Arctic Circle. The smaller data base of radiation balance measurements available showed a much smaller and statistically non-significant change. Reductions in global irradiance were most frequent in the early spring months and in the western sectors of the Arctic, coinciding with the seasonal and spatial distribution of the incursions of polluted air which give rise to the Arctic Haze. Irradiance measured in Antarctica during the same period showed a similar and more widespread decline despite the lower concentrations of pollutants. A marked increase in the surface radiation balance was recorded. Possible reasons for these interpolar anomalies and their consequences for temperature change are discussed.


1988 ◽  
Vol 34 (118) ◽  
pp. 333-341 ◽  
Author(s):  
Johannes Oerlemans

AbstractGlacier variations during the last few centuries have shown a marked coherence over the globe. Characteristic features are the maximum stand somewhere in the middle of the nineteenth century, and the steady retreat afterwards (with some minor interruptions depending on the particular region). In many papers, qualitative statements have been made about the causes of these fluctuations. Lower temperatures associated with solar variability and/or volcanic activity are the most popular explanations. In particular, the statistical relation between glacier activity and major volcanic eruptions appears to be strong.In this paper, an attempt is made to simulate recent glacier fluctations with a physics-based model. A simple climate model, calculating perturbations of surface-radiation balance and air temperature (not necessarily in phase!), is coupled to a schematic time-dependent glacier model. The climate model is forced by volcanic activity (Greenland acidity and/or Lamb’s dust-veil index) and greenhouse warming. Solar variability was not considered, because its effect on climate has still not been demonstrated in a convincing way. The output is translated into variations in equilibrium-line altitude, driving the glacier model.The simulated variations in glacier length show good agreement with the observed record, but the amplitude is too small. This is improved when mass-balance gradients are assumed to be larger in warmer climates. Compared to recently published modelling studies of particular glaciers, in which series of local parameters (e.g. tree-ring width and temperature) were used as forcing, the present simulation is better. This suggests that the radiation balance is a decisive factor with regard to glacier variations on longer time-scales. The model experiments lend support to the results of Porter (1986), who concluded from a more qualitative study that a strong relation exists between periods of increased volcanic activity and glacier advances.A comparison of some selected runs shows that, according to the present model, the greenhouse warming would be responsible for about 50% of the glacier retreat observed over the last 100 years.


2020 ◽  
Author(s):  
Ya-Lun Tsai ◽  
Soner Uereyen ◽  
Andreas Dietz ◽  
Claudia Kuenzer ◽  
Natascha Oppelt

<p>Seasonal snow cover extent (SCE) is a critical component not only for the global radiation balance and climatic behavior but also for water availability of mountainous and arid regions, vegetation growth, permafrost, and winter tourism. However, due to the effects of the global warming, SCE has been observed to behave in much more irregular and extreme patterns in both temporal and spatial aspects. Therefore, a continuous SCE monitoring strategy is necessary to understand the effect of climate change on the cryosphere and to assess the corresponding impacts on human society and the environment. Nevertheless, although conventional optical sensor-based sensing approaches are mature, they suffer from cloud coverage and illumination dependency. Consequently, spaceborne Synthetic Aperture Radar (SAR) provides a pragmatic solution for achieving all-weather and day-and-night monitoring at low cost, especially after the launch of the Sentinel-1 constellation. </p><p>In the present study, we propose a new global SCE mapping approach, which utilizes dual-polarization intensity-composed bands, polarimetric H/A/α decomposition information, topographical factors, and a land cover layer to detect the SCE. By including not only amplitude but also phase information, we overcome the limitations of previous studies, which can only map wet SCE. Additionally, a layer containing the misclassification probability is provided as well for measuring the uncertainty. Based on the validation with in-situ stations and optical imagery, around 85% accuracy of the classification is ensured. Consequently, by implementing the proposed method globally, we can provide a novel way to map high resolution (20 m) and cloud-free SCE even under cloud covered/night conditions. Preparations to combine this product with the optical-based DLR Global SnowPack are already ongoing, offering the opportunity to provide a daily snow mapping service in the near future which is totally independent from clouds or polar darkness.</p>


Sign in / Sign up

Export Citation Format

Share Document