scholarly journals Motion partitioning between the Pacific plate, Baja California and the North America plate: The Tosco-Abreojos fault revisited

2004 ◽  
Vol 31 (8) ◽  
Author(s):  
F. Michaud
1993 ◽  
Vol 67 (6) ◽  
pp. 965-979 ◽  
Author(s):  
L. R. Saul

Four new venerid species from the Cretaceous of the North American Pacific Slope are described and four previously described species are reassigned. Of the new species, two are allotted to new genera: Rhaiphiale based upon Rhaiphiale pharota n. sp. and Egrona based upon Egrona fallax n. sp., both Turonian in age and from southern California. The other new species are Loxo quintense n. sp., of late Maastrichtian age from California, and Paraesa cedrina n. sp., late Albian in age from Baja California, Mexico. The previously described species “Meretrix” arata Gabb, 1864, Turonian, and “?Meretrix” fragilis Gabb, 1869, late Maastrichtian, are placed in the new genus Callistalox; “Meretrix” lens (Gabb, 1864), Campanian age, and Flaventia zeta Popenoe, 1937, Turonian, are provisionally assigned to Paraesa Casey, 1952. This is the first identification of Paraesa from the Pacific Slope of North America. No species of Flaventia Jukes-Brown, 1908, is now known in Pacific Slope faunas.


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
Author(s):  
Daniel R. Muhs

Abstract. The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific Coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marine terraces and constructional coral reef terraces. Because the northern part of the region is tectonically active, MIS 5e terrace elevations vary considerably, from a few meters above sea level to as much as 70 m above sea level. The primary paleo-sea level indicator is the shoreline angle, the junction of the wave-cut platform with the former sea cliff, which forms very close to mean sea level. Most areas on the Pacific Coast of North America have experienced uplift since MIS 5e time, but the rate of uplift varies substantially as a function of tectonic setting. Chronology in most places is based on uranium-series ages of the solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e can sometimes be accomplished using amino acid ratios of fossil mollusks, compared to similar ratios in mollusks that also host dated corals. U-series analyses of corals that have experienced largely closed-system histories range from ~124 to ~118 ka, in good agreement with ages from MIS 5e reef terraces elsewhere in the world. There is no geomorphic, stratigraphic, or geochronology evidence for more than one high-sea stand during MIS 5e on the Pacific Coast of North America. However, in areas of low uplift rate, the outer parts of MIS 5e terraces apparently were re-occupied by the high-sea stand at ~100 ka (MIS 5c), evident from mixes of coral ages and mixes of molluscan faunas with differing thermal aspects. This sequence of events took place because glacial isostatic adjustment processes acting on North America resulted in regional high-sea stands at ~100 ka and ~80 ka that were higher than is the case in far-field regions, distant from large continental ice sheets. During MIS 5e time, sea surface temperatures (SST) off the Pacific Coast of North America were higher than is the case at present, evident from extralimital southern species of mollusks found in dated deposits. Apparently no wholesale shifts in faunal provinces took place, but in MIS 5e time, some species of bivalves and gastropods lived hundreds of kilometers north of their present northern limits, in good agreement with SST estimates derived from foraminiferal records and alkenone-based reconstructions in deep-sea cores. Because many areas of the Pacific Coast of North America have been active tectonically for much or all of the Quaternary, many earlier interglacial periods are recorded as uplifted, higher elevation terraces. In addition, from southern Oregon to northern Baja California, there are U-series-dated corals from marine terraces that formed ~80 ka, during MIS 5a. In contrast to MIS 5e, these terrace deposits host molluscan faunas that contain extralimital northern species, indicating cooler SST at the end of MIS 5. Here I present a standardized database of MIS 5e sea-level indicators along the Pacific Coast of North America and the corresponding dated samples. The database is available in Muhs (2021)  [https://doi.org/10.5281/zenodo.5557355].


2013 ◽  
Vol 141 (10) ◽  
pp. 3610-3625 ◽  
Author(s):  
Kevin M. Grise ◽  
Seok-Woo Son ◽  
John R. Gyakum

Abstract Extratropical cyclones play a principal role in wintertime precipitation and severe weather over North America. On average, the greatest number of cyclones track 1) from the lee of the Rocky Mountains eastward across the Great Lakes and 2) over the Gulf Stream along the eastern coastline of North America. However, the cyclone tracks are highly variable within individual winters and between winter seasons. In this study, the authors apply a Lagrangian tracking algorithm to examine variability in extratropical cyclone tracks over North America during winter. A series of methodological criteria is used to isolate cyclone development and decay regions and to account for the elevated topography over western North America. The results confirm the signatures of four climate phenomena in the intraseasonal and interannual variability in North American cyclone tracks: the North Atlantic Oscillation (NAO), the El Niño–Southern Oscillation (ENSO), the Pacific–North American pattern (PNA), and the Madden–Julian oscillation (MJO). Similar signatures are found using Eulerian bandpass-filtered eddy variances. Variability in the number of extratropical cyclones at most locations in North America is linked to fluctuations in Rossby wave trains extending from the central tropical Pacific Ocean. Only over the far northeastern United States and northeastern Canada is cyclone variability strongly linked to the NAO. The results suggest that Pacific sector variability (ENSO, PNA, and MJO) is a key contributor to intraseasonal and interannual variability in the frequency of extratropical cyclones at most locations across North America.


1995 ◽  
Vol 69 (3) ◽  
pp. 509-515 ◽  
Author(s):  
Richard L. Squires ◽  
Robert A. Demetrion

The cassiduloid echinoid Calilampas californiensis n. gen. and sp. is described from middle lower Eocene (“Capay Stage”) shallow-marine sandstones in both the middle part of the Bateque Formation, Baja California Sur, Mexico, and the lower part of the Llajas Formation, southern California. The new genus is tentatively placed in family Pliolampadidae. The cassiduloid Cassidulus ellipticus Kew, 1920, previously known only from the “Capay Stage” in California, is also present in “Capay Stage” shallow-marine sandstones of the Bateque Formation.


2020 ◽  
Author(s):  
Jie Zhang ◽  
Zhiping Wu ◽  
Yanjun Cheng

<p>The horsetail structure, also named brush structure, generally refers to a sets of secondary faults converged to the primary fault on the plane. Based on 2-D and 3-D seismic data, the structural characteristics, evolution and mechanism of the horsetail structure of Liaodong Bay area in Bohai Bay Basin and Weixinan area in Beibuwan Basin are analyzed. In the Liaodong Bay area, the primary fault of the horsetail structure is the NNE-striking branch fault of Tan-Lu strike-slip fault zone. The NE-striking secondary extensional faults converged to the primary strike-slip fault. Fault activity analysis shows that both the primary and secondary faults intensively activated during the third Member of the Shahejie Formation (42~38 Ma). In the Weixinan area, the NE-striking Weixinan fault is the primary fault of the horsetail structure, which is an extensional fault. A large amount of EW-striking secondary extensional faults converged to the primary NE-striking Weixinan fault. Fault activity analysis shows that NE-striking primary fault intensively activated during the second Member of the Liushagang Formation (48.6~40.4 Ma), whereas the EW-striking secondary faults intensively activated during the Weizhou Formation (33.9~23 Ma). The different structure and evolution of the horsetail structure in the Liaodong Bay area and Weixinan area are mainly resulted from the regional tectonic settings. About 42 Ma, the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the right-lateral strike-slip movement of NNE-striking Tan-Lu fault and the formation of NE-striking extensional faults along the bend of the strike-slip fault, therefore, the horsetail structure of Liaodong Bay area formed. However, the formation of the horsetail structure of Weixinan area is related to the clockwise rotation of extension stress in the South China Sea (SCS): 1) During Paleocene to M. Eocene (65~37.8 Ma), the retreat of Pacific plate subduction zone resulted in the formation of NW-SE extensional stress field in the north margin of the SCS, NE-striking primary fault of horsetail structure formed; 2) During L. Eocene to E. Oligocene (37.8~28.4 Ma), the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the clockwise rotation of extension direction from NW-SE to N-S in the north margin of the SCS, a large amount of EW-striking secondary faults of horsetail structure formed, and the horsetail structure was totally formed in the Weixinan area until this stage.</p>


2007 ◽  
Vol 170 (3) ◽  
pp. 1373-1380 ◽  
Author(s):  
C. Plattner ◽  
R. Malservisi ◽  
T. H. Dixon ◽  
P. LaFemina ◽  
G. F. Sella ◽  
...  

2008 ◽  
Vol 21 (15) ◽  
pp. 3872-3889 ◽  
Author(s):  
Jesse Kenyon ◽  
Gabriele C. Hegerl

Abstract The influence of large-scale modes of climate variability on worldwide summer and winter temperature extremes has been analyzed, namely, that of the El Niño–Southern Oscillation, the North Atlantic Oscillation, and Pacific interdecadal climate variability. Monthly indexes for temperature extremes from worldwide land areas are used describe moderate extremes, such as the number of exceedences of the 90th and 10th climatological percentiles, and more extreme events such as the annual, most extreme temperature. This study examines which extremes show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show that temperature extremes are substantially affected by large-scale circulation patterns, and they show distinct regional patterns of response to modes of climate variability. The effects of the El Niño–Southern Oscillation are seen throughout the world but most clearly around the Pacific Rim and throughout all of North America. Likewise, the influence of Pacific interdecadal variability is strongest in the Northern Hemisphere, especially around the Pacific region and North America, but it extends to the Southern Hemisphere. The North Atlantic Oscillation has a strong continent-wide effect for Eurasia, with a clear but weaker effect over North America. Modes of variability influence the shape of the daily temperature distribution beyond a simple shift, often affecting cold and warm extremes and sometimes daytime and nighttime temperatures differently. Therefore, for reliable attribution of changes in extremes as well as prediction of future changes, changes in modes of variability need to be accounted for.


Sign in / Sign up

Export Citation Format

Share Document