scholarly journals Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments

2004 ◽  
Vol 31 (22) ◽  
Author(s):  
A. Gettelman ◽  
E. M. Weinstock ◽  
E. J. Fetzer ◽  
F. W. Irion ◽  
A. Eldering ◽  
...  
2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2002 ◽  
Vol 107 (D5) ◽  
pp. SOL 47-1-SOL 47-6 ◽  
Author(s):  
A. A. Viggiano ◽  
D. E. Hunton ◽  
Thomas M. Miller ◽  
John O. Ballenthin

2017 ◽  
Vol 17 (7) ◽  
pp. 4493-4511 ◽  
Author(s):  
Shu-peng Ho ◽  
Liang Peng ◽  
Holger Vömel

Abstract. Radiosonde observations (RAOBs) have provided the only long-term global in situ temperature measurements in the troposphere and lower stratosphere since 1958. In this study, we use consistently reprocessed Global Positioning System (GPS) radio occultation (RO) temperature data derived from the COSMIC and Metop-A/GRAS missions from 2006 to 2014 to characterize the inter-seasonal and interannual variability of temperature biases in the upper troposphere and lower stratosphere for different radiosonde sensor types. The results show that the temperature biases for different sensor types are mainly due to (i) uncorrected solar-zenith-angle-dependent errors and (ii) change of radiation correction. The mean radiosonde–RO global daytime temperature difference in the layer from 200 to 20 hPa for Vaisala RS92 is equal to 0.20 K. The corresponding difference is equal to −0.06 K for Sippican, 0.71 K for VIZ-B2, 0.66 K for Russian AVK-MRZ, and 0.18 K for Shanghai. The global daytime trend of differences for Vaisala RS92 and RO temperature at 50 hPa is equal to 0.07 K/5 yr. Although there still exist uncertainties for Vaisala RS92 temperature measurement over different geographical locations, the global trend of temperature differences between Vaisala RS92 and RO from June 2006 to April 2014 is within ±0.09 K/5 yr. Compared with Vaisala RS80, Vaisala RS90, and sondes from other manufacturers, the Vaisala RS92 seems to provide the most accurate RAOB temperature measurements, and these can potentially be used to construct long-term temperature climate data records (CDRs). Results from this study also demonstrate the feasibility of using RO data to correct RAOB temperature biases for different sensor types.


2013 ◽  
Vol 13 (3) ◽  
pp. 7061-7079 ◽  
Author(s):  
J.-B. Renard ◽  
S. N. Tripathi ◽  
M. Michael ◽  
A. Rawal ◽  
G. Berthet ◽  
...  

Abstract. Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols during a balloon flight to an altitude of ~24 km. The measurements were performed with an improved version of the STAC aerosol counter dedicated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. On the contrary, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol-ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. On the other hand, the model cannot reproduce the absence of detected electrification in the lower stratosphere, such that a distinct unknown process in this altitude range inhibits electrification. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation.


2016 ◽  
Vol 8 (1) ◽  
pp. 61-78 ◽  
Author(s):  
S. Tegtmeier ◽  
M. I. Hegglin ◽  
J. Anderson ◽  
B. Funke ◽  
J. Gille ◽  
...  

Abstract. A quality assessment of the CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments is provided by means of a detailed intercomparison. The climatologies in the form of monthly zonal mean time series are obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991–2010. The intercomparisons focus on the mean biases of the monthly and annual zonal mean fields and aim to identify their vertical, latitudinal and temporal structure. The CFC evaluations (based on MIPAS, ACE-FTS and HIRDLS) reveal that the uncertainty in our knowledge of the atmospheric CFC-11 and CFC-12 mean state, as given by satellite data sets, is smallest in the tropics and mid-latitudes at altitudes below 50 and 20 hPa, respectively, with a 1σ multi-instrument spread of up to ±5 %. For HF, the situation is reversed. The two available data sets (HALOE and ACE-FTS) agree well above 100 hPa, with a spread in this region of ±5 to ±10 %, while at altitudes below 100 hPa the HF annual mean state is less well known, with a spread ±30 % and larger. The atmospheric SF6 annual mean states derived from two satellite data sets (MIPAS and ACE-FTS) show only very small differences with a spread of less than ±5 % and often below ±2.5 %. While the overall agreement among the climatological data sets is very good for large parts of the upper troposphere and lower stratosphere (CFCs, SF6) or middle stratosphere (HF), individual discrepancies have been identified. Pronounced deviations between the instrument climatologies exist for particular atmospheric regions which differ from gas to gas. Notable features are differently shaped isopleths in the subtropics, deviations in the vertical gradients in the lower stratosphere and in the meridional gradients in the upper troposphere, and inconsistencies in the seasonal cycle. Additionally, long-term drifts between the instruments have been identified for the CFC-11 and CFC-12 time series. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of atmospheric transport and variability, model–measurement comparisons and detection of long-term trends. The data sets will be publicly available from the SPARC Data Centre and through PANGAEA (doi:10.1594/PANGAEA.849223).


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 696 ◽  
Author(s):  
Dan Chen ◽  
Tian-Jiao Zhou ◽  
Li-Yun Ma ◽  
Chun-Hua Shi ◽  
Dong Guo ◽  
...  

This paper presents the results of a statistical study of the spatiotemporal distribution of ozone in the upper troposphere and lower stratosphere (UTLS) regions induced by cut-off lows (COLs) over Northeast Asia. The analysis was based on high-resolution ERA-Interim ozone data and Atmospheric Infrared Sounder (AIRS) satellite data for the period from 2005–2015. A total of 186 COL events were detected. The observed ozone distribution revealed an ozone-rich region in the upper troposphere (300 hPa) located around the center of the COLs at the time when COLs reached their maximum intensity. This region corresponds to a region of high potential vorticity (PV). In the middle troposphere (500 hPa), enhanced levels of the ozone were distributed in two regions. The maximum concentration was located to the east of the COLs, and a secondary maximum region was in the center of the COLs. Further analysis revealed that this spatial distribution of ozone in the upper troposphere was affected mainly by decreased tropopause. The ozone was subject to a ‘rotary’ transport process in the middle troposphere, influenced mainly by the anticlockwise circulation of the COLs and the surrounding horizontal wind distribution. The temporal variations in ozone anomalies also revealed the ozone distribution patterns and transport processes. The variation in ozone anomalies implied that the magnitude of the ozone increase was closely related to the evolution of COLs lifecycle. The temporal and spatial distributions of the ozone revealed by the statistical analysis of the AIRS satellite data were overall consistent with those of the ERA-Interim data.


2020 ◽  
Author(s):  
Harald Boenisch ◽  
Andreas Zahn ◽  
Luis Millan

<p>The CARIBIC (Civil  Aircraft  for  the  Regular  Investigation  of the atmosphere Based on an <br>Instrumented Container) project is part of the a European research infrastructure IAGOS (In-<br>Service Aircraft for a Global Observing System) making regular in-situ measurements of more <br>than 100 atmospheric constituents, include ozone and water vapour, on-board of an in-service <br>passenger  aircraft  operated  by  Lufthansa.  The  dataset  of  the  IAGOS-CARIBIC  is  therefore <br>ideally suited as a testbed for the SPARC (Stratosphere-troposphere Processes And their Role <br>in Climate) activity OCTAV-UTLS (Observed Composition Trends And Variability in the Upper <br>Troposphere and Lower Stratosphere). One key aspect, shown here as work in progress, is to <br>develop, define and apply common metrics for the comparison of different UTLS datasets <br>using a variety of meteorological coordinate systems derived from reanalysis datasets. The <br>focus here is on the variability of ozone in the upper troposphere and lower stratosphere <br>(UTLS) on interannual and seasonal timescales and the observed trends. The in-situ ozone <br>measurements by IAGOS-CARIBIC are analysed relative to different tropopause definitions <br>and coordinate systems. All these meteorological information applied here are produced with <br>the JETPAC tool ‒ Jet and Tropopause Products for Analysis and Characterization (Manney et <br>al., 2011).</p>


2008 ◽  
Vol 8 (17) ◽  
pp. 5245-5261 ◽  
Author(s):  
C. Kiemle ◽  
M. Wirth ◽  
A. Fix ◽  
G. Ehret ◽  
U. Schumann ◽  
...  

Abstract. In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) flew a zenith-viewing water vapor differential absorption lidar (DIAL) during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX) in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH) and the Fluorescent Advanced Stratospheric Hygrometer (FLASH) onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer comparison conditions, the agreement with the in-situ hygrometers provides evidence of the excellent quality of FISH, FLASH and DIAL. Most DIAL profiles exhibit a smooth exponential decrease of water vapor mixing ratio in the tropical upper troposphere to lower stratosphere transition. The hygropause with a minimum mixing ratio of 2.5 µmol/mol is found between 15 and 17 km. A high-resolution (2 km horizontal, 0.2 km vertical) DIAL cross section through the anvil outflow of tropical convection shows that the ambient humidity is increased by a factor of three across 100 km.


2016 ◽  
Vol 9 (3) ◽  
pp. 929-938 ◽  
Author(s):  
Andreas Kräuchi ◽  
Rolf Philipona ◽  
Gonzague Romanens ◽  
Dale F. Hurst ◽  
Emrys G. Hall ◽  
...  

Abstract. In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.


2016 ◽  
Vol 16 (5) ◽  
pp. 3345-3368 ◽  
Author(s):  
M. Chirkov ◽  
G. P. Stiller ◽  
A. Laeng ◽  
S. Kellmann ◽  
T. von Clarmann ◽  
...  

Abstract. We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in the reduced spectral resolution nominal observation mode. The data cover the period from January 2005 to April 2012 and the altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of modelled spectra to the measured limb spectral radiances. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The rate of linear growth in the lower latitudes lower stratosphere was about 6 to 7 pptv year−1 in the period 2005–2012. The profiles obtained were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS – ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from the NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data. This is attributed to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10°-latitude/1-to-2-km-altitude bins. The relative linear variation was always positive, with relative increases of 40–70 % decade−1 in the tropics and global lower stratosphere, and up to 120 % decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. Asian HCFC-22 emissions have become the major source of global upper tropospheric HCFC-22. In the upper troposphere, monsoon air, rich in HCFC-22, is instantaneously mixed into the tropics. In the middle stratosphere, between 20 and 30 km, the observed trend is inconsistent with the trend at the surface (corrected for the age of stratospheric air), hinting at circulation changes. There exists a stronger positive trend in HCFC-22 in the Southern Hemisphere and a more muted positive trend in the Northern Hemisphere, implying a potential change in the stratospheric circulation over the observation period.


Sign in / Sign up

Export Citation Format

Share Document