scholarly journals Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere

2011 ◽  
Vol 38 (20) ◽  
pp. n/a-n/a ◽  
Author(s):  
David A. Newnham ◽  
Patrick J. Espy ◽  
Mark A. Clilverd ◽  
Craig J. Rodger ◽  
Annika Seppälä ◽  
...  
2021 ◽  
Author(s):  
Josephine Alessandra Salice ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Eldho Midhun Babu

<p>Energetic electron precipitation (EEP) into the Earth's atmosphere can collide with gases and deposit their energy there. The collisions between electrons and atmospheric gasses initiate several chemical reactions which can reduce the ozone concentration. Ozone is critically important in the middle atmosphere energy budget as changes in the ozone concentration impact temperature and winds. EEP is not fully understood in terms of how much energy is being deposited and what the associated drivers are. An accurate quantification of EEP has limitations due to instrumental challenges and therefore imposes limitations of the associated EEP parameterization into climate models. A solution to this problem is a better understanding of the driver processes of energetic electron acceleration and precipitation, alongside optimized data handling. In this study the bounce loss cone fluxes are inferred from EEP measurements by the Medium Energy Proton and Electron Detector (MEPED) on board the Polar Orbiting Environmental Satellite (POES) and the Meteorological Operational Satellite Program of Europe (METOP) at tens of keV to relativistic energies. It investigates EEP in contexts of different solar wind structures: high-speed solar wind streams (HSSs) and coronal mass ejections (CMEs), during an eleven-year period from 2004 – 2014. While today's chemistry climate models only provide snapshots of EEP, independent of context, this study aims to understand the context EEP is created in, which will allow a more accurate estimate of the EEP to be applied in atmospheric climate models.</p>


2019 ◽  
Vol 19 (14) ◽  
pp. 9485-9494 ◽  
Author(s):  
Pavle Arsenovic ◽  
Alessandro Damiani ◽  
Eugene Rozanov ◽  
Bernd Funke ◽  
Andrea Stenke ◽  
...  

Abstract. Energetic particle precipitation (EPP) affects the chemistry of the polar middle atmosphere by producing reactive nitrogen (NOy) and hydrogen (HOx) species, which then catalytically destroy ozone. Recently, there have been major advances in constraining these particle impacts through a parametrization of NOy based on high-quality observations. Here we investigate the effects of low (auroral) and middle (radiation belt) energy range electrons, separately and in combination, on reactive nitrogen and hydrogen species as well as on ozone during Southern Hemisphere winters from 2002 to 2010 using the SOCOL3-MPIOM chemistry-climate model. Our results show that, in the absence of solar proton events, low-energy electrons produce the majority of NOy in the polar mesosphere and stratosphere. In the polar vortex, NOy subsides and affects ozone at lower altitudes, down to 10 hPa. Comparing a year with high electron precipitation with a quiescent period, we found large ozone depletion in the mesosphere; as the anomaly propagates downward, 15 % less ozone is found in the stratosphere during winter, which is confirmed by satellite observations. Only with both low- and middle-energy electrons does our model reproduce the observed stratospheric ozone anomaly.


2018 ◽  
Author(s):  
Pavle Arsenovic ◽  
Alessandro Damiani ◽  
Eugene Rozanov ◽  
Bernd Funke ◽  
Andrea Stenke ◽  
...  

Abstract. Energetic particle precipitation (EPP) affects the chemistry of the polar middle atmosphere by producing reactive nitrogen (NOy) and hydrogen (HOx) species, which then catalytically destroy ozone. Recently, there have been major advances in constraining these particle impacts through a parametrization based on high quality observations. Here we investigate the effects of low (auroral) and middle (radiation belt) energy range electrons, separately and in combination, on reactive nitrogen and hydrogen species as well as on ozone during Southern Hemisphere winters from 2002 to 2010 using the chemistry-climate model SOCOL3-MPIOM. Our results show that, in absence of solar proton events, low energy electrons produce the majority of NOy in the polar mesosphere and stratosphere. In the polar vortex, NOy subsides and affects ozone at lower altitudes, down to 10 hPa. Comparing a year with high electron precipitation with a quiescent period, we found large ozone depletion in the mesosphere; as the anomaly propagates downward, 15 % less ozone is found in the stratosphere during winter, which is confirmed by satellite observations. Only with both low and middle energy electrons, our model reproduces the observed stratospheric ozone anomaly.


2005 ◽  
Vol 23 (11) ◽  
pp. 3419-3430 ◽  
Author(s):  
C. J. Rodger ◽  
M. A. Clilverd ◽  
N. R. Thomson ◽  
D. Nunn ◽  
J. Lichtenberger

Abstract. In this study we examine energetic electron precipitation fluxes driven by lightning, in order to determine the global distribution of energy deposited into the middle atmosphere. Previous studies using lightning-driven precipitation burst rates have estimated losses from the inner radiation belts. In order to confirm the reliability of those rates and the validity of the conclusions drawn from those studies, we have analyzed New Zealand data to test our global understanding of troposphere to magnetosphere coupling. We examine about 10000h of AbsPAL recordings made from 17 April 2003 through to 26 June 2004, and analyze subionospheric very-low frequency (VLF) perturbations observed on transmissions from VLF transmitters in Hawaii (NPM) and western Australia (NWC). These observations are compared with those previously reported from the Antarctic Peninsula. The perturbation rates observed in the New Zealand data are consistent with those predicted from the global distribution of the lightning sources, once the different experimental configurations are taken into account. Using lightning current distributions rather than VLF perturbation observations we revise previous estimates of typical precipitation bursts at L~2.3 to a mean precipitation energy flux of ~1×10-3 ergs cm-2s-1. The precipitation of energetic electrons by these bursts in the range L=1.9-3.5 will lead to a mean rate of energy deposited into the atmosphere of 3×10-4 ergs cm-2min-1, spatially varying from a low of zero above some ocean regions to highs of ~3-6×10-3 ergs cm-2min-1 above North America and its conjugate region.


2013 ◽  
Vol 13 (7) ◽  
pp. 19895-19919 ◽  
Author(s):  
M. E. Andersson ◽  
P. T. Verronen ◽  
C. J. Rodger ◽  
M. A. Clilverd ◽  
S. Wang

Abstract. Using Microwave Limb Sounder (MLS/Aura) and Medium Energy Proton and Electron Detector (MEPED/POES) observations between 2005–2009, we study the longitudinal response of nighttime mesospheric OH to radiation belt electron precipitation. Our analysis concentrates on geomagnetic latitudes from 55–72° N/S and altitudes between 70–78 km. The aim of this study is to better assess the spatial distribution of electron forcing, which is important for more accurate modeling of its atmospheric and climate effects. In the Southern Hemisphere, OH data show a hot-spot at longitudes between 150° W–30° E, i.e., poleward of the Southern Atlantic Magnetic Anomaly (SAMA) region. In the Northern Hemisphere, energetic electron precipitation–induced OH variations are more equally distributed with longitude. This longitudinal behaviour of OH can also be identified using Empirical Orthogonal Function analysis, and is found to be similar to that of MEPED–measured electron fluxes. The main difference is in the SAMA region, where MEPED appears to measure very large electron fluxes while MLS observations show no enhancement of OH. This indicates that in the SAMA region the MEPED observations are not related to precipitating electrons, at least not at energies > 100 keV, but related to instrument contamination. Analysis of selected OH data sets for periods of different geomagnetic activity levels shows that the longitudinal OH hot-spot south of the SAMA (the Antarctic Peninsula region) is partly caused by strong, regional electron forcing, although atmospheric conditions also seem to play a role. This OH hot-spot is even seen weakly during periods of lower geomagnetic activity, which suggest that there is a steady drizzle of electrons affecting the atmosphere, due to the Earth's magnetic field being weaker in this region.


2017 ◽  
Vol 11 (1) ◽  
pp. 88-104 ◽  
Author(s):  
A. Vialatte ◽  
M. Barthélemy ◽  
J. Lilensten

Background:Nitric oxide concentration in the upper atmosphere is known to be highly dependent on the solar activity. It can be transported to the stratosphere by the atmospheric circulation. In the stratosphere it is responsible for the destruction of ozone and consequently stratospheric heating rates are affected. This is one of the mechanisms by which solar variability has been suspected to drive variability in the energetic budget of the Earth climate. Therefore, it is essential to know every physical and chemical processes leading to the production or to a destruction of nitric oxide.Aim:The aim of this work is to calculate the production rate of NO+and some of the NO electronic states created by electron impact on NO at night in the auroral zone using an electron transport code.Conclusion:We study this variability under different precipitation conditions and taking into account the variability of the neutral atmosphere with the geomagnetic and solar activity. We find that the energetic electron precipitation has a very small effect on the absolute value of the NO+and NO* production rates. In order to help further research to consider the effect of NO+and NO*, we provide a table of all the production rates in a medium solar and geomagnetic activity case.


2016 ◽  
Vol 121 (6) ◽  
pp. 5693-5707 ◽  
Author(s):  
H. Nesse Tyssøy ◽  
M. I. Sandanger ◽  
L.-K. G. Ødegaard ◽  
J. Stadsnes ◽  
A. Aasnes ◽  
...  

2010 ◽  
Vol 10 (19) ◽  
pp. 9647-9656 ◽  
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
M. Dameris ◽  
P. J. Crutzen

Abstract. We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.


2017 ◽  
Vol 122 (8) ◽  
pp. 8679-8693 ◽  
Author(s):  
Christine Smith-Johnsen ◽  
Hilde Nesse Tyssøy ◽  
Koen Hendrickx ◽  
Yvan Orsolini ◽  
Grandhi Kishore Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document