scholarly journals Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw9.0)

2012 ◽  
Vol 117 (B2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yusaku Ohta ◽  
Tatsuya Kobayashi ◽  
Hiroaki Tsushima ◽  
Satoshi Miura ◽  
Ryota Hino ◽  
...  
2018 ◽  
Vol 13 (3) ◽  
pp. 453-459 ◽  
Author(s):  
Yusaku Ohta ◽  
Takuya Inoue ◽  
Shunichi Koshimura ◽  
Satoshi Kawamoto ◽  
Ryota Hino ◽  
...  

This short paper reviews the role of real-time global navigation satellite system (GNSS) in near-field tsunami forecasting. Recent efforts highlight that coseismic fault model estimation based on real-time GNSS has contributed substantially to our understanding of large magnitude earthquakes and their fault expansions. We briefly introduce the history of use of real-time GNSS processing in the rapid estimation of the coseismic finite fault model. Additionally, we discuss our recent trials on the estimation of quasi real-time tsunami inundation based on real-time GNSS data. Obtained results clearly suggest the effectiveness of real-time GNSS for tsunami inundation estimation as the GNSS can capture fault expansion and its slip amount in a relatively accurate manner within a short time period. We also discuss the future prospects of using real-time GNSS data for tsunami warning including effective combination of different methods for more reliable forecasting.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2019 ◽  
Author(s):  
Mauricio Fuentes ◽  
Sebastian Arriola ◽  
Sebastian Riquelme ◽  
Bertrand Delouis

Abstract. Chile host a great tsunamigenic potential along its coast, even with the large earthquakes occurred during the last decade, there is still a large amount of seismic energy to release. This permanent feature and the fact that the distance between the trench and the coast is just 100 km creates a difficult environment to do real time tsunami forecast. In Chile tsunami warnings are based on reports of the seismic events (hypocenter and magnitude) and a database of precomputed tsunami scenarios. However, because yet there is no answer to image the finite fault model within first minutes (before the first tsunami wave arrival), the precomputed scenarios consider uniform slip distributions. Here, we propose a scheme of processes to fill the gaps in-between blind zones due to waiting of demanding computational stages. The linear shallow water equations are solved to obtain a rapid estimation of the run-up distribution in the near field. Our results show that this linear method captures most of the complexity of the run-up heights in terms of shape and amplitude when compared with a fully non-linear tsunami code. Also, the run-up distribution is obtained in quasi real-time as soon as the seismic finite fault model is produced.


2019 ◽  
Vol 19 (6) ◽  
pp. 1297-1304
Author(s):  
Mauricio Fuentes ◽  
Sebastian Arriola ◽  
Sebastian Riquelme ◽  
Bertrand Delouis

Abstract. Despite the occurrence of several large earthquakes during the last decade, Chile continues to have a great tsunamigenic potential. This arises as a consequence of the large amount of strain accumulated along a subduction zone that runs parallel to its long coast, and a distance from the trench to the coast of no more than 100 km. These conditions make it difficult to implement real-time tsunami forecasting. Chile issues local tsunami warnings based on preliminary estimations of the hypocenter location and magnitude of the seismic sources, combined with a database of pre-computed tsunami scenarios. Finite fault modeling, however, does not provide an estimation of the slip distribution before the first tsunami wave arrival, so all pre-computed tsunami scenarios assume a uniform slip distribution. We implemented a processing scheme that minimizes this time gap by assuming an elliptical slip distribution, thereby not having to wait for the more time-consuming finite fault model computations.We then solve the linear shallow water equations to obtain a rapid estimation of the run-up distribution in the near field. Our results show that, at a certain water depth, our linear method captures most of the complexity of the run-up heights in terms of shape and amplitude when compared with a fully nonlinear tsunami model. In addition, we can estimate the run-up distribution in quasi-real-time as soon as the results of seismic finite fault modeling become available.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Keitaro Ohno ◽  
Yusaku Ohta ◽  
Satoshi Kawamoto ◽  
Satoshi Abe ◽  
Ryota Hino ◽  
...  

AbstractRapid estimation of the coseismic fault model for medium-to-large-sized earthquakes is key for disaster response. To estimate the coseismic fault model for large earthquakes, the Geospatial Information Authority of Japan and Tohoku University have jointly developed a real-time GEONET analysis system for rapid deformation monitoring (REGARD). REGARD can estimate the single rectangular fault model and slip distribution along the assumed plate interface. The single rectangular fault model is useful as a first-order approximation of a medium-to-large earthquake. However, in its estimation, it is difficult to obtain accurate results for model parameters due to the strong effect of initial values. To solve this problem, this study proposes a new method to estimate the coseismic fault model and model uncertainties in real time based on the Bayesian inversion approach using the Markov Chain Monte Carlo (MCMC) method. The MCMC approach is computationally expensive and hyperparameters should be defined in advance via trial and error. The sampling efficiency was improved using a parallel tempering method, and an automatic definition method for hyperparameters was developed for real-time use. The calculation time was within 30 s for 1 × 106 samples using a typical single LINUX server, which can implement real-time analysis, similar to REGARD. The reliability of the developed method was evaluated using data from recent earthquakes (2016 Kumamoto and 2019 Yamagata-Oki earthquakes). Simulations of the earthquakes in the Sea of Japan were also conducted exhaustively. The results showed an advantage over the maximum likelihood approach with a priori information, which has initial value dependence in nonlinear problems. In terms of application to data with a small signal-to-noise ratio, the results suggest the possibility of using several conjugate fault models. There is a tradeoff between the fault area and slip amount, especially for offshore earthquakes, which means that quantification of the uncertainty enables us to evaluate the reliability of the fault model estimation results in real time.


Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Sign in / Sign up

Export Citation Format

Share Document