scholarly journals Anthropogenically Forced Decadal Change of South Asian Summer Monsoon Across the Mid‐1990s

2019 ◽  
Vol 124 (2) ◽  
pp. 806-824 ◽  
Author(s):  
Feifei Luo ◽  
Buwen Dong ◽  
Fangxing Tian ◽  
Shuanglin Li
2016 ◽  
Vol 49 (1-2) ◽  
pp. 193-223 ◽  
Author(s):  
Moetasim Ashfaq ◽  
Deeksha Rastogi ◽  
Rui Mei ◽  
Danielle Touma ◽  
L. Ruby Leung

2021 ◽  
Vol 7 (23) ◽  
pp. eabg3848
Author(s):  
Steven C. Clemens ◽  
Masanobu Yamamoto ◽  
Kaustubh Thirumalai ◽  
Liviu Giosan ◽  
Julie N. Richey ◽  
...  

South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.


2015 ◽  
Vol 15 (5) ◽  
pp. 6967-7018 ◽  
Author(s):  
A. Rauthe-Schöch ◽  
A. K. Baker ◽  
T. J. Schuck ◽  
C. A. M. Brenninkmeijer ◽  
A. Zahn ◽  
...  

Abstract. The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region, which so far has mostly been observed from satellites, using the broad suite of trace gases and aerosols measured by CARIBIC. Elevated levels of a range of atmospheric pollutants were recorded e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles and several volatile organic compounds. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with regular latitudinal patterns of trace gases during the entire monsoon period. Trajectory calculations indicate that these air masses originated mainly from South Asia and Mainland Southeast Asia. Using the CARIBIC trace gas and aerosol measurements in combination with the Lagrangian particle dispersion model FLEXPART we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were consistently younger (less than 7 days) and the air masses mostly in an ozone forming chemical regime. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.


2015 ◽  
Vol 28 (17) ◽  
pp. 6626-6646 ◽  
Author(s):  
Shao-Yi Lee ◽  
Chien Wang

Abstract Previous studies on the response of the South Asian summer monsoon to the direct radiative forcing caused by anthropogenic absorbing aerosols have emphasized the role of premonsoonal aerosol forcing. This study examines the roles of aerosol forcing in both pre- and postonset periods using the Community Earth System Model, version 1.0.4, with the Community Atmosphere Model, version 4. Simulations were perturbed by model-derived radiative forcing applied (i) only during the premonsoonal period (May–June), (ii) only during the monsoonal period (July–August), and (iii) throughout both periods. Soil water storage is found to retain the effects of premonsoonal forcing into succeeding months, resulting in monsoonal central India drying. Monsoonal forcing is found to dry all of India through local responses. Large-scale responses, such as the meridional rotation of monsoon jet during June and its weakening during July–August, are significant only when aerosol forcing is present throughout both premonsoonal and monsoonal periods. Monsoon responses to premonsoonal forcing by the model-derived “realistic” distribution versus a uniform wide-area distribution were compared. Both simulations exhibit central India drying in June. June precipitation over northwestern India (increase) and southwestern India (decrease) is significantly changed under realistic but not under wide-area forcing. Finally, the same aerosol forcing is found to dry or moisten the July–August period following the warm or cool phase of the simulations’ ENSO-like internal variability. The selection of years used for analysis may affect the precipitation response obtained, but the overall effect seems to be an increase in rainfall variance over northwest and southwest India.


Sign in / Sign up

Export Citation Format

Share Document