scholarly journals The role of grain size and effective normal stress on localization and the frictional stability of simulated quartz gouge

Author(s):  
John D. Bedford ◽  
Daniel R. Faulkner
2015 ◽  
Vol 42 (4) ◽  
pp. 1061-1067 ◽  
Author(s):  
W. David Watkins ◽  
Harmony V. Colella ◽  
Michael R. Brudzinski ◽  
Keith B. Richards-Dinger ◽  
James H. Dieterich

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Angelo Pommella ◽  
Luca Cipelletti ◽  
Laurence Ramos
Keyword(s):  

Wear ◽  
2021 ◽  
pp. 203678
Author(s):  
Vahid Javaheri ◽  
Oskari Haiko ◽  
Saeed Sadeghpour ◽  
Kati Valtonen ◽  
Jukka Kömi ◽  
...  

2017 ◽  
Vol 18 (12) ◽  
pp. 4342-4355 ◽  
Author(s):  
Andrew J. Turner ◽  
Richard F. Katz ◽  
Mark D. Behn ◽  
Tobias Keller

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1019 ◽  
Author(s):  
Angella ◽  
Donnini ◽  
Ripamonti ◽  
Górny ◽  
Zanardi

Tensile testing on ductile iron GJS 400 with different microstructures produced through four different cooling rates was performed in order to investigate the relevance of the microstructure’s parameters on its plastic behaviour. Tensile flow curve modelling was carried out with the Follansbee and Estrin-Kocks-Mecking approach that allowed for an explicit correlation between plastic behaviour and some microstructure parameters. In the model, the ferritic grain size and volume fraction of pearlite and ferrite gathered in the first part of this investigation were used as inputs, while other parameters, like nodule count and interlamellar spacing in pearlite, were neglected. The model matched very well with the experimental flow curves at high strains, while some mismatch was found only at small strains, which was ascribed to the decohesion between the graphite nodules and the ferritic matrix that occurred just after yielding. It can be concluded that the plastic behaviour of GJS 400 depends mainly on the ferritic grain size and pearlitic volume fraction, and other microstructure parameters can be neglected, primarily because of their high nodularity and few defects.


Author(s):  
A. B. Hawkins ◽  
K. D. Privett

AbstractBS 5930 offers little assistance to engineers wishing to use residual strength parameters in slope stability analysis. It wrongly suggests the ring shear gives lower parameters than the shear box.BS 5930 does not mention the fact that the residual strength is stress dependent, hence the failure envelope is curved and the parameters must be assessed using an appropriate effective normal stress. For this reason the correlation charts relating ϕ′R to plasticity index or clay content need replacing with a series of charts in which these properties are plotted against ϕ′R values obtained at a number of effective normal stress loadings. Even then such correlations should be treated with caution.


1994 ◽  
Vol 77 (7) ◽  
pp. 1928-1938 ◽  
Author(s):  
Desiderio Kovar ◽  
Michael J. Readey

1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


2021 ◽  
Vol 30 (2) ◽  
pp. 215-225
Author(s):  
Marthe Kretzschmar

Knowledge of the materiality of stone during the Enlightenment expanded following the exploration of mineralogical structure, to alter ideas about taxonomy and challenge the role of rocks in the history of the earth. Close studies of the material of marble sculpture generated expertise on grain size, surface varieties and stone deposits. This mode of reception became intertwined with contemporary controversies about the age of the earth. This article focuses on both French sculpture and geological discourses of the eighteenth century to reveal an international and interdisciplinary network centring on protagonists such as Denis Diderot, Paul-Henri Thiry d’Holbach and Étienne-Maurice Falconet; through these figures, debates can be connected concerning both geology and art theory. Within these contexts, the article discusses the translation processes between these artistic and geological interests.


Sign in / Sign up

Export Citation Format

Share Document