scholarly journals On the effect of grain fragmentation on frictional instabilities in faults with granular gouge

Author(s):  
Di Wang ◽  
Jan Carmeliet ◽  
Wei Zhou ◽  
Omid Dorostkar
Keyword(s):  
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5834
Author(s):  
Chi Zhang ◽  
Laszlo S. Toth

During severe plastic deformation (SPD), there is usually extended grain fragmentation, associated with the formation of a crystallographic texture. The effect of texture evolution is, however, coarsening in grain size, as neighbor grains might coalesce into one grain by approaching the same ideal orientation. This work investigates the texture-induced grain coarsening effect in face-centered cubic polycrystals during simple shear, in 3D topology. The 3D polycrystal aggregate was constructed using a cellular automaton model with periodic boundary conditions. The grains constituting the polycrystal were assigned to orientations, which were updated using the Taylor polycrystal plasticity approach. At the end of plastic straining, a grain detection procedure (similar to the one in electron backscatter diffraction, but in 3D) was applied to detect if the orientation difference between neighboring grains decreased below a small critical value (5°). Three types of initial textures were considered in the simulations: shear texture, random texture, and cube-type texture. The most affected case was the further shearing of an initially already shear texture: nearly 40% of the initial volume was concerned by the coalescence effect at a shear strain of 4. The coarsening was less in the initial random texture (~30%) and the smallest in the cube-type texture (~20%). The number of neighboring grains coalescing into one grain went up to 12. It is concluded that the texture-induced coarsening effect in SPD processing cannot be ignored and should be taken into account in the grain fragmentation process.


2019 ◽  
Vol 114 ◽  
pp. 252-271 ◽  
Author(s):  
A.H. Kobaissy ◽  
G. Ayoub ◽  
L.S. Toth ◽  
S. Mustapha ◽  
M. Shehadeh

2007 ◽  
Vol 546-549 ◽  
pp. 793-800
Author(s):  
S. Ringeval ◽  
David Piot ◽  
Julian H. Driver

An Al-3%Mg-0.25%Sc-0.12%Zr alloy was deformed by triaxial forging at 20-400°C up to strains of about 3. A study of its textural evolution reveals the tendency towards three symmetrical variants of a <110><1 10 ><001> component. This experimental observation is supported by a 3D spatially resolved crystal plasticity analysis. Samples strained at room temperature undergo grain fragmentation in the form of fine substructures and relatively weak textures. Conversely, at 300°C and above, more homogeneous intergranular deformation and rotations give rise to stronger textures. This eventually encourages grain coalescence and thus the development of interpenetrating “orientation chains”, creating a new type of microstructure. The influence of this texture development on the specific work hardening behaviour is discussed.


1996 ◽  
Vol 457 ◽  
Author(s):  
Kang Jia ◽  
Traugott E. Fischer

ABSTRACTThe microstructure, mechanical properties, abrasion and wear resistance of WC-Co nanocomposites synthesized by the spray conversion technique by McCandlish, Kear and Kim have been investigated. The binder phase of WC-Co nanocomposites is enriched in W and C, compared to conventional cermets. Small amorphous regions exist in the binder despite the slow cooling after liquid phase sintering. Few dislocations are found in the WC grains. The increased WC content and the amorphous regions modify (i.e. strengthen) the binder phase of the composites. Vickers indentation measurements show a hardness of the nanocomposites reaching 2310 kg/mm2. While the toughness of conventional cermets decreases with increasing hardness, the toughness does not decrease further as the WC grain size decreases from 0.7 to 0.07 μm. but remains constant at 8 MPam1/2. Scratches caused by a diamond indenter are small, commensurate with their hardness. These scratches are ductile, devoid of the grain fracture that is observed with conventional materials. The abrasions resistance of nanocomposites is about double that of conventional materials, although their hardness is larger by 23% only. This is due to the lack of WC grain fragmentation and removal which takes place in conventional cermets. Sliding wear resistance of WC/Co is proportional to their hardness; no additional benefit of nanostructure is obtained. This results from the very small size of adhesive wear events in even large WC grains.


2017 ◽  
Vol 39 ◽  
pp. 403-413 ◽  
Author(s):  
Qihao Chen ◽  
Sanbao Lin ◽  
Chunli Yang ◽  
Chenglei Fan ◽  
Hongliang Ge

1999 ◽  
Vol 2 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Olivier Tsoungui ◽  
Denis Vallet ◽  
Jean-Claude Charmet ◽  
Stéphane Roux

2010 ◽  
Vol 667-669 ◽  
pp. 629-634
Author(s):  
Margarita Isaenkova ◽  
Yuriy Perlovich ◽  
Vladimir Fesenko ◽  
Olga Krymskaya ◽  
Alexander Zavodchikov

The deformation behavior of commercial Zr alloys with 1% and 2,5%Nb under compression at temperatures of the (α+β)-region of Zr-Nb phase diagram is considered on the basis of experimental data obtained by X-ray texture study of deformed samples. Mechanisms, responsible for plastic deformation of alloys by different temperature-rate regimes were determined on the basis of resulting textures. Among these mechanisms there are crystallographic slip and mutual displacements of crystallites along interphase boundaries. The latter mechanism sharply intensifies by grain fragmentation down to nanostructuring under conditions of α«β phase transformations. Texture features of deformed samples testify about interaction of plastic deformation with phase transformations and indicate that due to this interaction compression by optimal regimes promotes the utmost refinement of structure elements.


2007 ◽  
Vol 561-565 ◽  
pp. 835-838
Author(s):  
Yuriy Perlovich ◽  
Margarita Isaenkova ◽  
Vladimir Fesenko ◽  
M. Grekhov

The texture of Ti and Zr rods, subjected to equal-channel angular pressing (ECAP) by routes C and BC, is considered as a source of information about the actual loading scheme, operating mechanisms of plastic deformation, the structure condition of material. Processes of grain reorientation under rolling and ECAP are compared and distinguishing features of the latter are revealed. Effects of grain fragmentation and dynamic recrystallization on the texture are discussed.


1998 ◽  
Vol 538 ◽  
Author(s):  
C.C. Battaile ◽  
T.E. Buchheit ◽  
E.A. Holm ◽  
G.W. Wellman ◽  
M.K. Neilsen

AbstractThe microstructural evolution of heavily deformed polycrystalline Cu is simulated by coupling a constitutive model for polycrystal plasticity with the Monte Carlo Potts model for grain growth. The effects of deformation on boundary topology and grain growth kinetics are presented. Heavy deformation leads to dramatic strain-induced boundary migration and subsequent grain fragmentation. Grain growth is accelerated in heavily deformed microstructures. The implications of these results for the thermomechanical fatigue failure of eutectic solder joints are discussed.


Sign in / Sign up

Export Citation Format

Share Document