scholarly journals Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2

2021 ◽  
Vol 126 (5) ◽  
Author(s):  
Sonali Shukla McDermid ◽  
Benjamin I. Cook ◽  
Martin G. De Kauwe ◽  
Justin Mankin ◽  
Jason E. Smerdon ◽  
...  
2006 ◽  
Vol 33 (23) ◽  
Author(s):  
N. P. Gillett ◽  
T. D. Kell ◽  
P. D. Jones

2016 ◽  
Author(s):  
Nir Y. Krakauer ◽  
Michael J. Puma ◽  
Benjamin I. Cook ◽  
Pierre Gentine ◽  
Larissa Nazarenko

Abstract. Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean-atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations of the equilibrium effect of contemporary irrigation geographic extent and intensity on climate with and without interactive sea surface temperatures. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. The interaction amplifies irrigation-driven standing wave patterns in the tropics and midlatitudes in our simulations, approximately doubling the global mean amplitude of surface temperature changes due to irrigation. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean. Attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.


2014 ◽  
Vol 98 ◽  
pp. 50-58 ◽  
Author(s):  
Marianne T. Lund ◽  
Terje K. Berntsen ◽  
Chris Heyes ◽  
Zbigniew Klimont ◽  
Bjørn H. Samset

2020 ◽  
Author(s):  
Michelle Miro ◽  
Krista Romita Grocholski ◽  
Jessica Spaccio ◽  
Samantha Borisoff ◽  
Art Degaetano ◽  
...  

2013 ◽  
Vol 5 (4) ◽  
pp. 378-380 ◽  
Author(s):  
Gerard Roe

Abstract It is a simple truism that public policy must be guided by an objective analysis of the physical and economic consequences of climate change. It is equally true that policy making is an inherently value-laden endeavor. While these two threads are interconnected, the relative weight given to each depends on the certainty that the technical analyses can deliver. For climate change, the envelope of uncertainty is best understood at the global scale, and there are some well known and formidable challenges to reducing it. This uncertainty must in turn be compounded with much more poorly constrained uncertainties in regional climate, climate impacts, and future economic costs. The case can be made that technical analyses have reached the point of diminishing returns. Should meaningful action on climate change await greater analytical certainty? This paper argues that policy makers should give greater weight to moral arguments, in no small part because that is where the heart of the debate really lies.


2021 ◽  
Author(s):  
Eva Hartmann ◽  
Mingyue Zhang ◽  
Elena Xoplaki ◽  
Sebastian Wagner

<p>The Eastern Mediterranean and Middle East region is influenced by multiple large-scale atmospheric circulation patterns including the Indian Summer Monsoon the North Atlantic Oscillation (NAO), the East Atlantic / Western Russia and Scandinavian patterns. The area offers a broad spectrum, both in time and space, of long high-quality instrumental time series, documentary information and natural archives. Yet, recent reviews revealed that paleoclimate modelling with low horizontal resolution cannot fully help to understand the interactions of the multiple atmospheric patterns, the Mediterranean SSTs and connect potential climate impacts that may trigger or contribute to major social-historical events. Thus, there is a need to integrate high-resolution regional climate modelling into paleo applications. Furthermore, such integration will close the gap between the coarse resolution of climate models and the regional to local scale that is covered by the proxy and historical evidence and will enable a better data-model comparison. We use the regional climate model COSMO-CLM (CCLM) in an adjusted (orbital, solar and volcanic forcing, greenhouse gas concentrations and land-use changes) paleoclimate version. Simulations are performed with 0.44° and 0.11° spatial resolution on a domain including the Eastern Mediterranean and the Middle East in time slices of the past 2000 years. Simulations of the present (1979-2019) with this paleoclimate version of CCLM forced by ERA-Interim reanalysis data have shown promising results compared to observational and reanalysis data sets. The mean annual cycles of precipitation and temperature of the Mediterranean are correctly shown with high temperatures and low precipitation during the summer months and lower temperatures and higher precipitation during the winter months. Additionally, the effect of climate change is simulated with increasing temperatures during the last 40 years. Simulations of the present (1979-2019) and past periods (525-575 CE and 1220-1290 CE) forced by the MPI-ESM-LR ‘past2k’ simulations performed under the CMIP6 protocol will be performed at the next step and first results will be shown in the frame of this conference. The periods are chosen because of high volcanic activity and to study the volcanic influence on climate. Those results are going to be used to link historical events with the regional climate and contribute to a better understanding of the indirect and complex association between climate and society.</p>


2016 ◽  
Vol 29 (12) ◽  
pp. 4399-4427 ◽  
Author(s):  
Matthew Newman ◽  
Michael A. Alexander ◽  
Toby R. Ault ◽  
Kim M. Cobb ◽  
Clara Deser ◽  
...  

Abstract The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of processes often more independent of the tropics than is observed. Finally, it is suggested that the assessment of PDO-related regional climate impacts, reconstruction of PDO-related variability into the past with proxy records, and diagnosis of Pacific variability within coupled GCMs should all account for the effects of these different processes, which only partly represent the direct forcing of the atmosphere by North Pacific Ocean SSTs.


Sign in / Sign up

Export Citation Format

Share Document