Orbital‐ and Millennial‐Scale Variability in Northwest African Dust Emissions Over the Past 67,000 years

Author(s):  
Christopher W. Kinsley ◽  
Louisa I. Bradtmiller ◽  
David McGee ◽  
Michael Galgay ◽  
Jan‐Berend Stuut ◽  
...  
2021 ◽  
Author(s):  
Christopher W. Kinsley ◽  
Louisa Irene Bradtmiller ◽  
David McGee ◽  
Michael Galgay ◽  
Jan-Berend Willem Stuut ◽  
...  

2007 ◽  
Vol 34 (23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xianfeng Wang ◽  
Augusto S. Auler ◽  
R. L. Edwards ◽  
Hai Cheng ◽  
Emi Ito ◽  
...  

2021 ◽  
Author(s):  
Hongbin Yu ◽  
Qian Tan ◽  
Lillian Zhou ◽  
Yaping Zhou ◽  
Huisheng Bian ◽  
...  

Abstract. This study characterizes a massive African dust intrusion into the Caribbean Basin and southern U.S. in June 2020, which is nicknamed the Godzilla dust plume, using a comprehensive set of satellite and ground-based observations (including MODIS, CALIOP, SEVIRI, AERONET, and EPA Air Quality network) and the NASA GEOS global aerosol transport model. The MODIS data record registered this massive dust intrusion event as the most intense episode over the past two decades. During this event, the aerosol optical depth observed by AERONET and MODIS peaked at 3.5 off the coast of West Africa and 1.8 in the Caribbean Basin. CALIOP observations show that the top of dust plume reached altitudes of 6–8 km in West Africa and descended to about 4 km altitude over the Caribbean Basin and 2 km over the U.S. Gulf coast. The dust plume degraded the air quality in Puerto Rico to the hazardous level, with maximum daily PM10 concentration of 453 μg m−3 recorded on June 23. The dust intrusion into the U.S. raised the PM2.5 concentration on June 27 to a level exceeding the EPA air quality standard in about 40 % of the stations in the southern U.S. Satellite observations reveal that dust emissions from convection-generated haboobs and other sources in West Africa were large albeit not extreme on a daily basis. However, the anomalous strength and northern shift of the North Atlantic Subtropical High (NASH) together with the Azores low formed a closed circulation pattern that allowed for accumulation of the dust near the African coast for about four days. When the NASH was weakened and wandered back to south, the dust outflow region was dominated by a strong African Easterly Jet that rapidly transported the accumulated dust from the coastal region toward the Caribbean Basin, resulting in the record-breaking African dust intrusion. In comparison to satellite observations, the GEOS model well reproduced the MODIS observed tracks of the meandering dust plume as it was carried by the wind systems. However, the model substantially underestimated dust emissions from haboobs and did not lift up enough dust to the middle troposphere for ensuing long-range transport. Consequently, the model largely missed the satellite-observed elevated dust plume along the cross-ocean track and underestimated the dust intrusion into the Caribbean Basin by a factor of more than 4. Modeling improvements need to focus on developing more realistic representations of moist convection, haboobs, and the vertical transport of dust.


2019 ◽  
Author(s):  
Lujendra Ojha ◽  
Ken L. Ferrier ◽  
Tank Ojha

Abstract. Over the past two decades, rates and patterns of Himalayan denudation have been documented through numerous cosmogenic nuclide measurements in central and eastern Nepal, Bhutan, and northern India. To date, however, few denudation rates have been measured in Far Western Nepal – a ~ 300-km-wide region near the center of the Himalayan arc – which presents a significant gap in our understanding of Himalayan denudation. Here we report new catchment-averaged millennial-scale denudation rates inferred from cosmogenic 10Be in fluvial quartz at seven sites in Far Western Nepal. The inferred denudation rates range from 385 ± 31 t km−2 yr−1 (0.15 ± 0.01 mm yr −1) to 8737 ± 2908 t km−2 yr−1 (3.3 ± 1.1 mm yr−1), and, in combination with our analyses of channel topography, are broadly consistent with previously published relationships between catchment-averaged denudation rates and normalized channel steepness across the Himalaya. These data show a weak correlation with catchment-averaged specific stream power, consistent with a Himalaya-wide compilation of previously published stream power values. Together, these observations are consistent with a dependence of denudation rate on both tectonic and climatic forcings, and represent a first step toward filling an important gap in denudation rate measurements in Far Western Nepal.


2017 ◽  
Vol 10 (10) ◽  
pp. 760-764 ◽  
Author(s):  
Matthew R. Loveley ◽  
Franco Marcantonio ◽  
Marilyn M. Wisler ◽  
Jennifer E. Hertzberg ◽  
Matthew W. Schmidt ◽  
...  

2017 ◽  
Author(s):  
Bryan N. Shuman ◽  
Cody Routson ◽  
Nicholas McKay ◽  
Sherilyn Fritz ◽  
Darrell Kaufman ◽  
...  

Abstract. A synthesis of 93 hydrologic records from across North and Central America, and adjacent tropical and Arctic islands, reveals centennial to millennial trends in the regional hydroclimates of the Common Era (CE; past 2000 years). The hydrological records derive from materials stored in lakes, bogs, caves, and ice from extant glaciers, which have the continuity through time to preserve low-frequency (> 100 year) climate signals that may not be well represented by other shorter-lived archives, such as tree-ring chronologies. The most common pattern, represented in 46 (49 %) of the records, indicates that the centuries before 1000 CE were drier than the centuries since that time. Principal components analysis indicates that millennial-scale trends represent the dominant pattern of variance in the southwest and northeast U.S., the mid-continent, Pacific Northwest, the Arctic, and the tropics, although not all records within a region show the same direction of change. The Pacific Northwest, Greenland, and the southernmost tier of the tropical sites tended to dry toward present, as many other areas became wetter than before. Twenty-two records (24 %) indicate that the Medieval period (800–1300 CE) was drier than the Little Ice Age (1400–1900 CE), but in many cases the difference was part of the longer millennial-scale trend, and, in 25 records (27 %), the Medieval period represented a pluvial (wet) phase. Where quantitative records permitted a comparison, we found that centennial-scale fluctuations over the Common Era represented changes of 3–7 % of the modern inter-annual range of variability in precipitation, but the accumulation of these long-term trends over the entirety of the Holocene caused recent centuries to be significantly wetter, on average, than most of the past 11 000 years.


Sign in / Sign up

Export Citation Format

Share Document