Water Use in the Landscape: A Comparison of Water Quality and Irrigation Technologies on Behavior

2021 ◽  
Vol 57 (10) ◽  
Author(s):  
Jonathan M. Lee ◽  
Laura O. Taylor ◽  
Emily Z. Berglund
EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 5
Author(s):  
Hayk Khachatryan ◽  
Alicia Rihn ◽  
Dong Hee Suh ◽  
Michael Dukes

Drought conditions make landscape irrigation and reducing water use top-of-mind for many Floridians. Encouraging wise water use is of particular importance to the smart irrigation industry and water policy makers. This 5-page fact sheet written by Hayk Khachatryan, Alicia Rihn, Dong Hee Suh, and Michael Dukes and published by the UF/IFAS Food and Resource Economics Department pinpoints key attributes and barriers affecting consumers' irrigation purchases and their adoption of smart irrigation technologies. https://edis.ifas.ufl.edu/fe1080


Eos ◽  
2017 ◽  
Author(s):  
Terri Cook

A new technique that merges data gathered by multiple satellites can be used to monitor agricultural water use and improve water quality assessments around the globe.


Author(s):  

Special features of water use within the boundaries of the Ishim River transboundary basin (an area with very scanty water resources) have been analyzed. In spite of the general trend of water consumption volume reduction the water quality deterioration has been found in the basin. The degree of anthropogenic impact upon water resources have been assessed on the basis of direct and indirect indicators.


2012 ◽  
pp. 71-86
Author(s):  
Vesna Djukic ◽  
Vladislava Mihailovic

During dry periods, the flow of medium and small streams is significantly reduced and equal to groundwater flow. Since the base flows provide information about aquifer characteristics and retention characteristics of a basin, the possibilities of analysis and simulation of base flows gain importance under the conditions of intensive water use and the increasing demand for adequate water quality protection. In this paper, a model was established and used for the description of the principles governing the changes of base runoff on the basis of a streamflow hydrograph registered at the outlet of the basin on the example of the Kolubara basin up to the ?Valjevo? profile. Since the amount of base runoff from a basin cannot be measured, the results of base flows obtained using the local minimum method were adopted as the criterion for the comparison of the modelled values of base runoffs. The created model was applied for making simulations of the base runoff hydrograph during three characteristic years (rainy 1970, average 1985, and dry 1990). Deviations between the base flow values obtained using the established model and by applying the local minimum method are acceptable from the standpoint of general hydrological accuracy.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Ayu Herdianti Primashita ◽  
Boedi Setya Rahardja ◽  
Prayogo .

Catfish (Clarias sp.) is a freshwater fish that is widely cultivated because it is a leading commodity. Increased production of catfish resulted in extra area of cultivated land and water use. The technology suitable to be applied is aquaponic system. In addition to saving land and water use, Aquaponic is also improving business efficiency through the utilization of nutrients from food remains and fish metabolism. Water quality is an important factor for the success of cultivation. Maintenance catfish with the addition of probiotics in aquaponic system can be a solution for maintaining water quality, because it contains bacteria that can increase nitrite to nitrate changes that can be utilized for growth of plants and do not poison the fish. The purpose of this study was to determine the effect of different probiotics in the aquaponic system towards growth rate and survival rate of catfish. The method that used in this research is experimental with completely randomized design (four  treat and five repeated) are P0 (control), P1 (probiotic A), P2 (probiotic B) and P3 (probiotic C). Analysis of data processed using Analysis of Variance. If there are significant differences then continued Duncan's Multiple Range Test. The results showed that the giving of probiotics in the aquaponic system is significantly different (p <0.05). The final conclusion is that the addition of probiotics in  aquaponic system affect the growth rate and survival rate of catfish. The highest specific growth rate (0.025%/ day) and the highest survival rate (77.8%) contained in the P2 treatment. The lowest specific growth rate (0.019% /day) and the lowest survival rate (64.4%) contained in P0 treatment (control). Keywords : Aquaponic, Catfish, Probiotic, Growth Rate, Survival Rate, Clarias sp.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2620 ◽  
Author(s):  
Wenge Zhang ◽  
Xianzeng Du ◽  
Anqi Huang ◽  
Huijuan Yin

Proper water use requires its monitoring and evaluation. An indexes system of overall water use efficiency is constructed here that covers water consumption per 10,000 yuan GDP, the coefficient of effective utilization of irrigation water, the water consumption per 10,000 yuan of industrial value added, domestic water consumption per capita of residents, and the proportion of water function zone in key rivers and lakes complying with water-quality standards and is applied to 31 provinces in China. Efficiency is first evaluated by a projection pursuit cluster model. Multidimensional efficiency data are transformed into a low-dimensional subspace, and the accelerating genetic algorithm then optimizes the projection direction, which determines the overall efficiency index. The index reveals great variety in regional water use, with Tianjin, Beijing, Hebei, and Shandong showing highest efficiency. Shanxi, Liaoning, Shanghai, Zhejiang, Henan, Shanxi, and Gansu also use water with high efficiency. Medium efficiency occurs in Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Hainan, Qinghai, Ningxia, and Low efficiency is found for Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, and Xinjiang. Tibet is the least efficient. The optimal projection direction is a* = (0.3533, 0.7014, 0.4538, 0.3315, 0.1217), and the degree of influence of agricultural irrigation efficiency, water consumption per industrial profit, water used per gross domestic product (GDP), domestic water consumption per capita of residents, and environmental water quality on the result has decreased in turn. This may aid decision making to improve overall water use efficiency across China.


2014 ◽  
Author(s):  
Chenguang Sheng ◽  
George Nnanna ◽  
Chandramouli Viswanathan

This paper contains an analysis of withdrawal data for North West Indiana to compute consumptive-use coefficients and to describe monthly variability of withdrawals and consumptive use. Concurrent data were available for most water-use categories from 1990 through 2008. Average monthly water withdrawals are discussed for a variety of water-use categories, and average water use per month is depicted graphically. Water quality analysis is presented and historic water quality data of Northwest Indiana, (Lake, Porter and LaPort Counties) were downloaded from USEPA website and they were examined for the trends in different water quality constituents. Individual station based analysis and regional analysis were conducted using MK Test. Water quality data indicated an improvement trend. Water withdrawals data were analyzed using regression and Artificial Neural Network (ANN) models. The ANN model performed a better forecasting while compared to a linear regression model. For most water-use categories, the summer months were those of highest withdrawal and highest consumptive use. For public supply, average monthly withdrawals ranged from 2,193 million gallons per day (Mgal/d) (February) to 3,092 Mgal/d (July). North West Indiana energy production had large increases in average monthly withdrawals in the summer months (17,551 Mgal/d in February to 26,236 Mgal/d in July, possibly because of increased electricity production in the summer, a need for additional cooling-water withdrawals when intake-water temperature is high, or use of different types of cooling methods during different times of the year. Average industrial withdrawals ranged from 31,553 Mgal/d (February) to 36,934 Mgal/d (August). The North West Indiana irrigation data showed that most withdrawals were in May through October for golf courses, nurseries, and crop irrigation. Miscellaneous water withdrawals ranged from 12.2 Mgal/d (January) to 416.3 Mgal/d (October), commercial facilities that have high water demand in Indiana are medical facilities, schools, amusement facilities, wildlife facilities, large stores, colleges, correctional institutions, and national security facilities. Consumptive use and consumptive-use coefficients were computed by two principal methods in this study: the return-flow and withdrawal method and the winter-base-rate method (WBR). The WBR method was not suitable for the industrial and miscellaneous water-use categories. The RW method was not used for public-supply facilities. The public-supply annual average consumptive-use coefficient derived by use of the WBR methods is 8 percent from 1990 to 2008 for North West Indiana; the summer average consumptive-use coefficient was considerably higher with the amount of 20 percent. The energy production annual consumptive-use coefficient was 13 percent by the WBR method, which increased to 28 percent for summer. In terms of maximum accuracy and minimal uncertainty, use of available withdrawal, return-flow, and consumptive-use data reported by facilities and data estimated from similar facilities are preferable over estimates based on data for a particular water-use category or groups of water-use categories. If monthly withdrawal, return flow, and consumptive use data are few and limited, monthly patterns described in this report may be used as a basis of estimation, but the level of uncertainty may be a greater than for the other estimation methods.


Sign in / Sign up

Export Citation Format

Share Document