scholarly journals Surface‐layer wind shear and momentum transport from clear‐sky to cloudy weather regimes over land

Author(s):  
A.M. Koning ◽  
L. Nuijens ◽  
F.C. Bosveld ◽  
A.P. Siebesma ◽  
P.A. Dorp ◽  
...  
2021 ◽  
Author(s):  
Ada Mariska Koning ◽  
Louise Nuijens ◽  
Fred C. Bosveld ◽  
Pier Siebesma ◽  
Pim A. van Dorp ◽  
...  

2020 ◽  
Author(s):  
Mariska Koning ◽  
Louise Nuijens ◽  
Fred Bosveld ◽  
Pier Siebesma ◽  
Remco Verzijlbergh ◽  
...  

<p>Convective momentum transport (CMT) measurements are scarce, but important to constrain the impacts of CMT on wind profiles, variability of the wind and possibly the large-scale circulation.</p><p>We investigate how wind profiles and momentum fluxes change with cloudiness and convection. With stronger convection, we expect that the wind shear in the lowest 200m, wherein wind turbines are located, reduces. Cumulus days are generally strongly convective and hence well mixed. They are expected to differ from clear-sky days: the boundary layer is deeper, and cumulus may induce a different (thermal) circulation in the sub-cloud layer. Comparing cumulus and other days fairly, we must be mindful of the changes in convection strength with cloud cover, time of the day, seasons, and the wind strength that impacts the wind shear magnitude.</p><p>This study uses nine years of data from the Cabauw observatory, The Netherlands, containing 10-minute averages of wind speed, wind direction, and momentum fluxes from a 200 m tall tower along with cloud-base heights from a ceilometer. Realistic fine-scale Large Eddy Simulation (LES) hindcasts over the same time period and a 5km<sup>3</sup> domain over Cabauw provide insight into the processes at higher altitude. In both observations and LES, days with rooted clouds, which have strong connection to the sub-cloud layer, are separated from clear-sky days and days in which clouds only impact the convection through radiation effects. Days with rooted clouds are subsequently divided into three groups of increasing cloud cover: 5-30% (shallow clouds), 30-70% (somewhat deeper clouds) and >70% (overcast).</p><p>Both observations and LES show that shear in the near-surface wind speed (NSWS) reduces with stronger insolation, which is expected: more insolation causes a more unstable atmosphere, stronger convection, thus more mixing. In a weakly unstable atmosphere, rooted clouds (5-70% cloud cover) generally have better mixed winds (less normalised shear). The NSWS accelerates more from morning to afternoon on these days, indicating that not only the mixing is stronger, but also that downward mixing of higher momentum by the clouds affects the wind in the lowest 200m. If this is true, the assumption of Monin-Obukhov Similarity Theory (MOST) that large convective eddies are not important in the surface layer, does not hold. This possibly has a great impact on surface-flux parametrizations based on MOST, which are used by many numerical models, from local and mesoscale to global models. Analysing surface-layer scaling for momentum, we test whether this assumption is indeed violated in such cases.</p><p>Momentum transport profiles in LES show that when deeper clouds with larger cloud cover are present, transport in the cloud layer is larger. In the cross-wind component of the profile, the four categories show different deceleration in the mixed layer, and different acceleration near the top of the mixed layer. Likely, the stronger inversion-jump in the cross-wind causes this momentum flux character.</p><p>With this study, we provide an overview of the effects that have been observed in different cloudiness and convective conditions and gained understanding of the important processes and implications of the cloud effects on momentum transport.</p>


2006 ◽  
Vol 134 (2) ◽  
pp. 664-674 ◽  
Author(s):  
Jongil Han ◽  
Hua-Lu Pan

Abstract A parameterization of the convection-induced pressure gradient force (PGF) in convective momentum transport (CMT) is tested for hurricane intensity forecasting using NCEP's operational Global Forecast System (GFS) and its nested Regional Spectral Model (RSM). In the parameterization the PGF is assumed to be proportional to the product of the cloud mass flux and vertical wind shear. Compared to control forecasts using the present operational GFS and RSM where the PGF effect in CMT is taken into account empirically, the new PGF parameterization helps increase hurricane intensity by reducing the vertical momentum exchange, giving rise to a closer comparison to the observations. In addition, the new PGF parameterization forecasts not only show more realistically organized precipitation patterns with enhanced hurricane intensity but also reduce the forecast track error. Nevertheless, the model forecasts with the new PGF parameterization still largely underpredict the observed intensity. One of the many possible reasons for the large underprediction may be the absence of hurricane initialization in the models.


2020 ◽  
Vol 77 (5) ◽  
pp. 1661-1681
Author(s):  
Qingfang Jiang ◽  
Qing Wang ◽  
Shouping Wang ◽  
Saša Gaberšek

Abstract The characteristics of a convective internal boundary layer (CIBL) documented offshore during the East Coast phase of the Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER-EAST) field campaign has been examined using field observations, a coupled mesoscale model (i.e., Navy’s COAMPS) simulation, and a couple of surface-layer-resolving large-eddy simulations (LESs). The Lagrangian modeling approach has been adopted with the LES domain being advected from a cool and rough land surface to a warmer and smoother sea surface by the mean offshore winds in the CIBL. The surface fluxes from the LES control run are in reasonable agreement with field observations, and the general CIBL characteristics are consistent with previous studies. According to the LESs, in the nearshore adjustment zone (i.e., fetch < 8 km), the low-level winds and surface friction velocity increase rapidly, and the mean wind profile and vertical velocity skewness in the surface layer deviate substantially from the Monin–Obukhov similarity theory (MOST) scaling. Farther offshore, the nondimensional vertical wind shear and scalar gradients and higher-order moments are consistent with the MOST scaling. An elevated turbulent layer is present immediately below the CIBL top, associated with the vertical wind shear across the CIBL top inversion. Episodic shear instability events occur with a time scale between 10 and 30 min, leading to the formation of elevated maxima in turbulence kinetic energy and momentum fluxes. During these events, the turbulence kinetic energy production exceeds the dissipation, suggesting that the CIBL remains in nonequilibrium.


2020 ◽  
Vol 77 (5) ◽  
pp. 1865-1885 ◽  
Author(s):  
Qingfang Jiang

Abstract The influence of swell on turbulence and scalar profiles in a marine surface layer and underlying physics is examined in this study through diagnosis of large-eddy simulations (LES) that explicitly resolve the surface layer and underlying swell. In general, under stable conditions, the mean wind and scalar profiles can be significantly modified by swell. The influence of swell on wind shear, turbulence structure, scalar profiles, and evaporation duct (ED) characteristics becomes less pronounced in a more convective boundary layer, where the buoyancy production of turbulence is significant. Dynamically, swell has little direct impact on scalar profiles. Instead it modifies the vertical wind shear by exerting pressure drag on the wave boundary layer. The resulting redistribution of vertical wind shear leads to changes in turbulence production and therefore turbulence mixing of scalars. Over swell, the eddy diffusivities from LES systematically deviate from the Monin–Obukhov similarity theory (MOST) prediction, implying that MOST becomes invalid over a swell-dominated sea. The deviations from MOST are more pronounced in a neutral or stable boundary layer under relatively low winds and less so in a convective boundary layer.


2017 ◽  
Vol 145 (10) ◽  
pp. 3989-4009 ◽  
Author(s):  
Bradley W. Klotz ◽  
Haiyan Jiang

Because surface wind speeds within tropical cyclones are important for operational and research interests, it is vital to understand surface wind structure in relation to various storm and environmental influences. In this study, global rain-corrected scatterometer winds are used to quantify and evaluate characteristics of tropical cyclone surface wind asymmetries using a modified version of a proven aircraft-based low-wavenumber analysis tool. The globally expanded surface wind dataset provides an avenue for a robust statistical analysis of the changes in structure due to tropical cyclone intensity, deep-layer vertical wind shear, and wind shear’s relationship with forward storm motion. A presentation of the quantified asymmetry indicates that wind shear has a significant influence on tropical storms at all radii but only for areas away from the radius of maximum wind in both nonmajor and major hurricanes. Evaluation of a shear’s directional relation to motion indicates that a cyclonic rotation of the surface wind field asymmetry from downshear left to upshear left occurs in conjunction with an anticyclonic rotation of the directional relationship (i.e., from shear direction to the left, same, right, or opposite of the motion direction). It was discovered that in tropical cyclones experiencing effects from wind shear, an increase in absolute angular momentum transport occurs downshear and often downshear right. The surface wind speed low-wavenumber maximum in turn forms downwind of this momentum transport.


2017 ◽  
Vol 101 ◽  
pp. 96-110 ◽  
Author(s):  
M.C. Holtslag ◽  
W.A.A.M. Bierbooms ◽  
G.J.W. van Bussel

2020 ◽  
Vol 12 (9) ◽  
pp. 1398 ◽  
Author(s):  
Cheolhee Yoo ◽  
Jungho Im ◽  
Dongjin Cho ◽  
Naoto Yokoya ◽  
Junshi Xia ◽  
...  

Land surface temperature (LST) is used as a critical indicator for various environmental issues because it links land surface fluxes with the surface atmosphere. Moderate-resolution imaging spectroradiometers (MODIS) 1 km LSTs have been widely utilized but have the serious limitation of not being provided under cloudy weather conditions. In this study, we propose two schemes to estimate all-weather 1 km Aqua MODIS daytime (1:30 p.m.) and nighttime (1:30 a.m.) LSTs in South Korea for humid summer days. Scheme 1 (S1) is a two-step approach that first estimates 10 km LSTs and then conducts the spatial downscaling of LSTs from 10 km to 1 km. Scheme 2 (S2), a one-step algorithm, directly estimates the 1 km all-weather LSTs. Eight advanced microwave scanning radiometer 2 (AMSR2) brightness temperatures, three MODIS-based annual cycle parameters, and six auxiliary variables were used for the LST estimation based on random forest machine learning. To confirm the effectiveness of each scheme, we have performed different validation experiments using clear-sky MODIS LSTs. Moreover, we have validated all-weather LSTs using bias-corrected LSTs from 10 in situ stations. In clear-sky daytime, the performance of S2 was better than S1. However, in cloudy sky daytime, S1 simulated low LSTs better than S2, with an average root mean squared error (RMSE) of 2.6 °C compared to an average RMSE of 3.8 °C over 10 stations. At nighttime, S1 and S2 demonstrated no significant difference in performance both under clear and cloudy sky conditions. When the two schemes were combined, the proposed all-weather LSTs resulted in an average R2 of 0.82 and 0.74 and with RMSE of 2.5 °C and 1.4 °C for daytime and nighttime, respectively, compared to the in situ data. This paper demonstrates the ability of the two different schemes to produce all-weather dynamic LSTs. The strategy proposed in this study can improve the applicability of LSTs in a variety of research and practical fields, particularly for areas that are very frequently covered with clouds.


2020 ◽  
Author(s):  
Beatrice Saggiorato ◽  
Louise Nuijens ◽  
A. Pier Siebesma ◽  
Stephan de Roode ◽  
Irina Sandu ◽  
...  

<p>To study the influence of convective momentum transport (CMT) on wind, boundary layer and cloud evolution in a marine cold air outbreak (CAO) we use Large-Eddy Simulations subjected to different baroclinicity (wind shear) but similar surface forcing. The simulated domain is large enough ( ≈100 × 100 km<sup>2</sup>) to develop typical mesoscale cellular convective structures.  We find that a maximum friction induced by momentum transport (MT) locates in the cloud layer for an increase of geostrophic wind with height (forward shear, FW) and near the surface for a decrease of wind with height (backward shear, BW). Although the total MT always acts as a friction, the interaction of friction-induced cross-isobaric flow with the Coriolis force can develop super-geostrophic winds near the surface (FW) or in the cloud layer (BW). The contribution of convection to MT is evaluated by decomposing the momentum flux by column water vapor and eddy size, revealing that CMT acts to accelerate sub-cloud layer winds under FW shear and that mesoscale circulations contribute significantly to MT for this horizontal resolution (250 m), even if small scale eddies are non-negligible and likely more important as resolution increases. Under FW shear, a deeper boundary layer and faster cloud transition are simulated, because MT acts to increase surface fluxes and wind shear enhances turbulent mixing across cloud tops. Our results show that the coupling between winds and convection is crucial for a range of problems, from CAO lifetime and cloud transitions to ocean heat loss and near-surface wind variability.</p>


Sign in / Sign up

Export Citation Format

Share Document