scholarly journals Examination of Surface Wind Asymmetries in Tropical Cyclones. Part I: General Structure and Wind Shear Impacts

2017 ◽  
Vol 145 (10) ◽  
pp. 3989-4009 ◽  
Author(s):  
Bradley W. Klotz ◽  
Haiyan Jiang

Because surface wind speeds within tropical cyclones are important for operational and research interests, it is vital to understand surface wind structure in relation to various storm and environmental influences. In this study, global rain-corrected scatterometer winds are used to quantify and evaluate characteristics of tropical cyclone surface wind asymmetries using a modified version of a proven aircraft-based low-wavenumber analysis tool. The globally expanded surface wind dataset provides an avenue for a robust statistical analysis of the changes in structure due to tropical cyclone intensity, deep-layer vertical wind shear, and wind shear’s relationship with forward storm motion. A presentation of the quantified asymmetry indicates that wind shear has a significant influence on tropical storms at all radii but only for areas away from the radius of maximum wind in both nonmajor and major hurricanes. Evaluation of a shear’s directional relation to motion indicates that a cyclonic rotation of the surface wind field asymmetry from downshear left to upshear left occurs in conjunction with an anticyclonic rotation of the directional relationship (i.e., from shear direction to the left, same, right, or opposite of the motion direction). It was discovered that in tropical cyclones experiencing effects from wind shear, an increase in absolute angular momentum transport occurs downshear and often downshear right. The surface wind speed low-wavenumber maximum in turn forms downwind of this momentum transport.

2020 ◽  
Vol 12 (21) ◽  
pp. 3610
Author(s):  
Song Yang ◽  
Richard Bankert ◽  
Joshua Cossuth

The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical cyclones (TCs) from 1987–2012 have been carefully calibrated for inter-sensor frequency differences, center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme, and application of the Backus–Gilbert interpolation scheme for better presentation of the TC horizontal structure. With additional storm motion direction and the 200–850 hPa wind shear direction, a unique and comprehensive TC database is created for this study. A reliable and detailed climatology for each TC category is analyzed and discussed. There is significant annual variability of the number of storms at hurricane intensity, but the annual number of all storms is relatively stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity. Three composition schemes are applied to present a reliable and detailed TC climatology at each intensity category and its geographic characteristics. The global composition relative to the North direction is not able to lead a realistic structure for an individual TC. Enhanced convection in the down-motion quadrants relative to direction of TC motion is obvious for Cat 1–3 TCs, while Cat 4–5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are evident for weak storms. Results indicate the direction of TC movement has more impact on weak storms than on Cat 4–5 TCs. A striking feature is that all TCs have a consistent pattern of minimum TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction of the 200–850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear direction. There is no geographic variation of storm structure relative to the vertical wind shear direction except over the southern hemisphere which shows a mirror image of the storm structure over the northern hemisphere. This study indicates that regional variation of storm structure relative to storm motion direction is mainly due to differences of the vertical wind shear direction among these basins. Results demonstrate the direction of the 200–850 hPa wind shear plays a critical role in TC structure.


2021 ◽  
pp. 1-42
Author(s):  
Song Yang ◽  
Vincent Lao ◽  
Richard Bankert ◽  
Timothy R. Whitcomb ◽  
Joshua Cossuth

AbstractAccurate precipitation climatology is presented for tropical depression (TD), tropical storm (TS), and tropical cyclone (TC) over oceans using the recently-released, consistent and high quality precipitation datasets from all passive microwave sensors covering 1998-2012 along with the Automated Rotational Center Hurricane Eye Retrieval (ARCHER)-based TC center positions. Impacts with respect to the direction of both TC movement and the 200-850 hPa wind shear on the spatial distributions of TC precipitation are analyzed. The TC eyewall contraction process during its intensification is noted by a decrease in the radius of maximum rainrate with an increase in TC intensity. For global TCs, the maximum rainrate with respect to the direction of TC movement is located in the down-motion quadrants for TD, TS, and Cat 1-3 TCs, and in a concentric pattern for Cat 4-5 TCs. A consistent maximum TC precipitation with respect to the direction of the 200-850 hPa wind shear is shown in the down shear left quadrant (DSLQ). With respect to direction of TC movement, spatial patterns of TC precipitation vary with basins and show different features for weak and strong storms. The maximum rainrate is always located in DSLQ for all TC categories and basins, except the Southern Hemisphere basin where it is in the down shear right quadrant (DSRQ). This study not only confirms previously published results on TC precipitation distributions relative to vertical wind shear direction, but also provides a detailed distribution for each TC category and TS, while TD storms display an enhanced rainfall rate ahead of the down shear quadrants.


2010 ◽  
Vol 1 (2) ◽  
pp. 71-91 ◽  
Author(s):  
Corene J. Matyas

In this article, the author utilizes a GIS to spatially analyze radar reflectivity returns during the 24 hours following 43 tropical cyclone (TC) landfalls. The positions of convective rainfall regions and their areal extent are then examined according to storm intensity, motion, vertical wind shear, time until extratropical transition, time after landfall, and distance from the coastline. As forward velocity increases in conjunction with an extratropical transition, these regions move outward, shift from the right side to the front of the TC, and grow in size. A similar radial shift, but with a decrease in areal extent, occurs as TCs weaken. Further quantification of the shapes of these regions could yield a more spatially accurate assessment of where TCs may produce high rainfall totals.


2010 ◽  
Vol 67 (1) ◽  
pp. 274-284 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract The previous study of helicity, CAPE, and shear in Hurricane Bonnie (1998) was extended to all eight tropical cyclones sampled by NASA during the Convection and Moisture Experiments (CAMEX). Storms were categorized as having large or small ambient vertical wind shear, with 10 m s−1 as the dividing line. In strongly sheared storms, the downshear mean helicity exceeded the upshear mean by a factor of 4. As in the previous study, the helicity differences resulted directly from the tropical cyclone response to ambient shear, with enhanced in-up-out flow and veering of the wind with height present downshear. CAPE in strongly sheared storms was 60% larger downshear. Mean inflow near the surface and the depth of the inflow layer each were 4 times larger downshear. At more than 30% of observation points outside the 100-km radius in the downshear right quadrant, midlatitude empirical parameters indicated a strong likelihood of supercells. No such points existed upshear in highly sheared storms. Much smaller upshear–downshear differences and little likelihood of severe cells occurred in storms with ambient wind shear below 10 m s−1. In addition to these azimuthal asymmetries, highly sheared storms produced 30% larger area-averaged CAPE and double the area-averaged helicity versus relatively unsheared storms. The vortex-scale increase in these quantities lessens the negative impact of large vertical wind shear.


2013 ◽  
pp. 1069-1088
Author(s):  
Corene J. Matyas

In this article, the author utilizes a GIS to spatially analyze radar reflectivity returns during the 24 hours following 43 tropical cyclone (TC) landfalls. The positions of convective rainfall regions and their areal extent are then examined according to storm intensity, motion, vertical wind shear, time until extratropical transition, time after landfall, and distance from the coastline. As forward velocity increases in conjunction with an extratropical transition, these regions move outward, shift from the right side to the front of the TC, and grow in size. A similar radial shift, but with a decrease in areal extent, occurs as TCs weaken. Further quantification of the shapes of these regions could yield a more spatially accurate assessment of where TCs may produce high rainfall totals.


2012 ◽  
Vol 93 (12) ◽  
pp. 1901-1912 ◽  
Author(s):  
Brian Tang ◽  
Kerry Emanuel

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilation—or the flux of low-entropy air into the center of the tropical cyclone. Based on a theoretical framework, a ventilation index is introduced that is equal to the environmental vertical wind shear multiplied by the nondimensional midlevel entropy deficit divided by the potential intensity. The ventilation index has a strong influence on tropical cyclone climatology. Tropical cyclogenesis preferentially occurs when and where the ventilation index is anomalously low. Both the ventilation index and the tropical cyclone's normalized intensity, or the intensity divided by the potential intensity, constrain the distribution of tropical cyclone intensification. The most rapidly intensifying storms are characterized by low ventilation indices and intermediate normalized intensities, while the most rapidly weakening storms are characterized by high ventilation indices and high normalized intensities. Since the ventilation index can be derived from large-scale fields, it can serve as a simple and useful metric for operational forecasts of tropical cyclones and diagnosis of model errors.


2013 ◽  
Vol 70 (3) ◽  
pp. 975-983 ◽  
Author(s):  
Fuqing Zhang ◽  
Dandan Tao

Abstract Through cloud-resolving simulations, this study examines the effect of vertical wind shear and system-scale flow asymmetry on the predictability of tropical cyclone (TC) intensity during different stages of the TC life cycle. A series of ensemble experiments is performed with varying magnitudes of vertical wind shear, each initialized with an idealized weak TC-like vortex, with small-scale, small-amplitude random perturbations added to the initial conditions. It is found that the environmental shear can significantly affect the intrinsic predictability of tropical cyclones, especially during the formation and rapid intensification stage. The larger the vertical wind shear, the larger the uncertainty in the intensity forecast, primarily owing to the difference in the timing of rapid intensification. In the presence of environmental shear, initial random noise may result in changes in the timing of rapid intensification by as much as 1–2 days through the randomness (and chaotic nature) of moist convection. Upscale error growth from differences in moist convection first alters the tilt amplitude and angle of the incipient tropical storms, which leads to significant differences in the timing of precession and vortex alignment. During the precession process, both the vertical tilt of the storm and the effective (local) vertical wind shear are considerably decreased after the tilt angle reaches 90° to the left of the environmental shear. The tropical cyclone intensifies immediately after the tilt and the effective local shear reach their minima. In some instances, small-scale, small-amplitude random noise may also limit the intensity predictability through altering the timing and strength of the eyewall replacement cycle.


2006 ◽  
Vol 134 (2) ◽  
pp. 664-674 ◽  
Author(s):  
Jongil Han ◽  
Hua-Lu Pan

Abstract A parameterization of the convection-induced pressure gradient force (PGF) in convective momentum transport (CMT) is tested for hurricane intensity forecasting using NCEP's operational Global Forecast System (GFS) and its nested Regional Spectral Model (RSM). In the parameterization the PGF is assumed to be proportional to the product of the cloud mass flux and vertical wind shear. Compared to control forecasts using the present operational GFS and RSM where the PGF effect in CMT is taken into account empirically, the new PGF parameterization helps increase hurricane intensity by reducing the vertical momentum exchange, giving rise to a closer comparison to the observations. In addition, the new PGF parameterization forecasts not only show more realistically organized precipitation patterns with enhanced hurricane intensity but also reduce the forecast track error. Nevertheless, the model forecasts with the new PGF parameterization still largely underpredict the observed intensity. One of the many possible reasons for the large underprediction may be the absence of hurricane initialization in the models.


Author(s):  
David A. Schecter

Abstract A cloud resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30 to 26 °C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle tropospheric relative humidity and lower tropospheric CAPE inward of the radius of maximum surface wind speed rm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction of rm and the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle tropospheric relative humidity for SSTs of 28-30 °C are respectively higher and lower than their counterparts at 26 °C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.


Sign in / Sign up

Export Citation Format

Share Document