scholarly journals Trees talk tremor – Wood anatomy and content reveal contrasting tree‐growth responses to earthquakes

Author(s):  
Christian H. Mohr ◽  
Michael Manga ◽  
Gerhard Helle ◽  
Ingo Heinrich ◽  
Laura Giese ◽  
...  
2021 ◽  
Author(s):  
Christian H. Mohr ◽  
Michael Manga ◽  
Gerhard Helle ◽  
Ingo Heinrich ◽  
Laura Giese ◽  
...  

2020 ◽  
Author(s):  
Jake D. Graham

Northern peatlands are a major terrestrial carbon (C) store, with an annual sink of 0.1 Pg C yr-1 and a total storage estimate of 547 Pg C. Northern peatlands are also major contributors of atmospheric methane, a potent greenhouse gas. The microtopography of peatlands helps modulate peatland carbon fluxes; however, there is a lack of quantitative characterizations of microtopography in the literature. The lack of formalized schemes to characterize microtopography makes comparisons between studies difficult. Further, many land surface models do not accurately simulate peatland C emissions, in part because they do not adequately represent peatland microtopography and hydrology. The C balance of peatlands is determined by differences in C influxes and effluxes, with the largest being net primary production and heterotrophic respiration, respectively. Tree net primary production at a treed bog in northern Minnesota represented about 13% of C inputs to the peatland, and marks tree aboveground net primary production (ANPP) as an important pathway for C to enter peatlands. Tree species Picea mariana (Black spruce) and Larix Laricina (Tamarack) are typically found in wooded peatlands in North America, and are widely distributed in the North American boreal zone. Therefore, understanding how these species will respond to environmental change is needed to make predictions of peatland C budgets in the future. As the climate warms, peatlands are expected to increase C release to the atmosphere, resulting in a positive feedback loop. Further, climate warming is expected to occur faster in northern latitudes compared to the rest of the globe. The Spruce and Peatland Responses Under Changing Environments (SPRUCE; https://mnspruce.ornl.gov/) manipulates temperature and CO2 concentrations to evaluate the in-situ response of a peatland to environmental change and is located in Minnesota, USA. In this dissertation, I documented surface roughness metrics for peatland microtopography in SPRUCE plots and developed three explicit methods for classifying frequently used microtopographic classes (microforms) for different scientific applications. Subsequently I used one of these characterizations to perform a sensitivity analysis and improve the parameterization of microtopography in a land surface model that was calibrated at the SPRUCE site. The modeled outputs of C from the analyses ranged from 0.8-34.8% when microtopographical parameters were allowed to vary within observed ranges. Further, C related outputs when using our data-driven parameterization differed from outputs when using the default parameterization by -7.9 - 12.2%. Finally, I utilized TLS point clouds to assess the effect elevated temperature and CO2 concentrations had on P. mariana and L. laricina after the first four years of SPRUCE treatments. I observed that P. mariana growth (aboveground net primary production) had a negative response to temperature initially, but the relationship became less pronounced through time. Conversely, L. laricina had no growth response to temperature initially, but developed a positive relationship through time. The divergent growth responses of P. mariana and L. laricina resulted in no detectable change in aboveground net primary production at the community level. Results from this dissertation help improve how peatland microtopography is represented, and improves understanding of how peatland tree growth will respond to environmental change in the future.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 737
Author(s):  
Ernesto C. Rodríguez-Ramírez ◽  
Jeymy Adriana Valdez-Nieto ◽  
José Antonio Vázquez-García ◽  
Gregg Dieringer ◽  
Isolda Luna-Vega

The Mexican tropical montane cloud forest trees occur under special and limited climatic conditions; many of these species are particularly more sensitive to drought stress. Hydric transport in leaf veins and wood features are influenced by climatic variations and individual intrinsic factors, which are essential processes influencing xylogenesis. We assessed the plastic response to climatic oscillation in two relict-endangered Magnolia schiedeana Schltdl. populations and associated the architecture of leaf vein traits with microenvironmental factors and wood anatomy features with climatic variables. The microenvironmental factors differed significantly between the two Magnolia populations and significantly influenced variation in M. schiedeana leaf venation traits. The independent chronologies developed for the two study forests were dated back 171–190 years. The climate-growth analysis showed that M. schiedeana growth is strongly related to summer conditions and growth responses to Tmax, Tmin, and precipitation. Our study highlights the use of dendroecological tools to detect drought effects. This association also describes modifications in vessel traits recorded before, during, and after drought events. In conclusion, our results advance our understanding of the leaf vein traits and wood anatomy plasticity in response to microenvironmental fluctuations and climate in the tropical montane cloud forest.


2019 ◽  
Vol 5 (1) ◽  
pp. eaat4313 ◽  
Author(s):  
Flurin Babst ◽  
Olivier Bouriaud ◽  
Benjamin Poulter ◽  
Valerie Trouet ◽  
Martin P. Girardin ◽  
...  

Energy and water limitations of tree growth remain insufficiently understood at large spatiotemporal scales, hindering model representation of interannual or longer-term ecosystem processes. By assessing and statistically scaling the climatic drivers from 2710 tree-ring sites, we identified the boreal and temperate land areas where tree growth during 1930–1960 CE responded positively to temperature (20.8 ± 3.7 Mio km2; 25.9 ± 4.6%), precipitation (77.5 ± 3.3 Mio km2; 96.4 ± 4.1%), and other parameters. The spatial manifestation of this climate response is determined by latitudinal and altitudinal temperature gradients, indicating that warming leads to geographic shifts in growth limitations. We observed a significant (P< 0.001) decrease in temperature response at cold-dry sites between 1930–1960 and 1960–1990 CE, and the total temperature-limited area shrunk by −8.7 ± 0.6 Mio km2. Simultaneously, trees became more limited by atmospheric water demand almost worldwide. These changes occurred under mild warming, and we expect that continued climate change will trigger a major redistribution in growth responses to climate.


2014 ◽  
Vol 22 (2) ◽  
pp. 161-178 ◽  
Author(s):  
D.G. Maynard ◽  
D. Paré ◽  
E. Thiffault ◽  
B. Lafleur ◽  
K.E. Hogg ◽  
...  

There are concerns about the effect of increasing resource extraction and other human activities on the soils and vegetation of the boreal zone. The review covers published papers between 1974 and 2012 to assess the effects of natural disturbances and human activities on soils and tree nutrition and growth of the Canadian boreal zone. Changes in soil and foliar nutrients following disturbance were also analyzed by meta-analysis. When sufficient replicated studies were not available for a given disturbance or nutrient, response assessments or narrative summaries are presented. The majority of fertilization studies in the boreal zone showed a positive tree growth response to nitrogen (N) and phosphorus (P) fertilization either individually or in combination. Large amounts of N may be lost through volatilization following fire depending on the severity and frequency of the fire. This may contribute to N limitation in the boreal zone. Available soil P and extractable calcium (Ca) and magnesium (Mg) increased in the surface horizons following fire. In contrast, extractable P decreased following harvest. Harvesting had no effect on total or inorganic N except in mixedwoods where total N decreased in the surface organic horizon following harvest. These are potential areas of concern given tree growth responses to N and P fertilization. Potassium (K) in the forest floor did not change following fire or harvesting; thus, K availability for tree nutrition should not be at risk, since its cycle is rapidly restored. Mercury (Hg) cycling may be altered in the boreal zone as a result of flooding and if fire return intervals and intensities increase. Interactions of multiple disturbances may increase the risk of nutrient depletions, but there is currently little information on these interactions in the boreal zone. Evidence to date suggests the soils of the Canadian boreal zone have not been adversely affected except in localized areas. However, there is the risk of nutrient loss if soils are not considered in our forest management strategies, particularly where multiple disturbances may interact. The potential for off-site movement of nutrients and contaminants into the atmospheric and aquatic ecosystems, in addition to on-site environmental issues, is also a concern.


Oecologia ◽  
2018 ◽  
Vol 187 (3) ◽  
pp. 825-837 ◽  
Author(s):  
Katharina Mausolf ◽  
Werner Härdtle ◽  
Kirstin Jansen ◽  
Benjamin M. Delory ◽  
Dietrich Hertel ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fabien Wagner ◽  
Vivien Rossi ◽  
Christopher Baraloto ◽  
Damien Bonal ◽  
Clément Stahl ◽  
...  

Climate models predict significant rainfall reduction in Amazonia, reducing water availability for trees. We present how functional traits modulate the tree growth response to climate. We used data from 3 years of bimestrial growth measurements for 204 trees of 53 species in the forest of Paracou, French Guiana. We integrated climate variables from an eddy covariance tower and functional trait values describing life history, leaf, and stem economics. Our results indicated that the measured functional traits are to some extent linked to the response of trees to climate but they are poor predictors of the tree climate-induced growth variation. Tree growth was affected by water availability for most of the species with different species growth strategies in drought conditions. These strategies were linked to some functional traits, especially maximum height and wood density. These results suggest that (i) trees seem adapted to the dry season at Paracou but they show different growth responses to drought, (ii) drought response is linked to growth strategy and is partly explained by functional traits, and (iii) the limited part of the variation of tree growth explained by functional traits may be a strong limiting factor for the prediction of tree growth response to climate.


2008 ◽  
Vol 50 (8) ◽  
pp. 982-990 ◽  
Author(s):  
Jianfeng Peng ◽  
Xiaohua Gou ◽  
Fahu Chen ◽  
Jinbao Li ◽  
Puxing Liu ◽  
...  

2007 ◽  
Vol 363 (1501) ◽  
pp. 2269-2282 ◽  
Author(s):  
Keith R Briffa ◽  
Vladimir V Shishov ◽  
Thomas M Melvin ◽  
Eugene A Vaganov ◽  
Håken Grudd ◽  
...  

This paper describes variability in trends of annual tree growth at several locations in the high latitudes of Eurasia, providing a wide regional comparison over a 2000-year period. The study focuses on the nature of local and widespread tree-growth responses to recent warming seen in instrumental observations, available in northern regions for periods ranging from decades to a century. Instrumental temperature data demonstrate differences in seasonal scale of Eurasian warming and the complexity and spatial diversity of tree-growing-season trends in recent decades. A set of long tree-ring chronologies provides empirical evidence of association between inter-annual tree growth and local, primarily summer, temperature variability at each location. These data show no evidence of a recent breakdown in this association as has been found at other high-latitude Northern Hemisphere locations. Using Kendall's concordance, we quantify the time-dependent relationship between growth trends of the long chronologies as a group. This provides strong evidence that the extent of recent widespread warming across northwest Eurasia, with respect to 100- to 200-year trends, is unprecedented in the last 2000 years. An equivalent analysis of simulated temperatures using the HadCM3 model fails to show a similar increase in concordance expected as a consequence of anthropogenic forcing.


Sign in / Sign up

Export Citation Format

Share Document