scholarly journals Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira Fault System

1993 ◽  
Vol 98 (B12) ◽  
pp. 21773-21807 ◽  
Author(s):  
Jean-Philippe Avouac ◽  
Gilles Peltzer
2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magali Riesner ◽  
Laurent Bollinger ◽  
Judith Hubbard ◽  
Cyrielle Guérin ◽  
Marthe Lefèvre ◽  
...  

AbstractThe largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT). This fault has generated a clear geomorphological signature of recent deformation in eastern and western Nepal, as well as further west in India. We focus on western Nepal, between the municipalities of Surkhet and Gorahi where this fault is well expressed. Although the fault system as a whole is accommodating contraction, across most of its length, this particular fault appears geomorphologically as a normal fault, indicating crustal extension in the hanging wall of the MHT. We focus this study on the reactivation of the MBT along the Surkhet-Gorahi segment of the surface trace of the newly named Reactivated Boundary Fault, which is ~ 120 km long. We first generate a high-resolution Digital Elevation Model from triplets of high-resolution Pleiades images and use this to map the fault scarp and its geomorphological lateral variation. For most of its length, normal motion slip is observed with a dip varying between 20° and 60° and a maximum cumulative vertical offset of 27 m. We then present evidence for recent normal faulting in a trench located in the village of Sukhetal. Radiocarbon dating of detrital charcoals sampled in the hanging wall of the fault, including the main colluvial wedge and overlying sedimentary layers, suggest that the last event occurred in the early sixteenth century. This period saw the devastating 1505 earthquake, which produced ~ 23 m of slip on the Main Frontal Thrust. Linked or not, the ruptures on the MFT and MBT happened within a short time period compared to the centuries of quiescence of the faults that followed. We suggest that episodic normal-sense activity of the MBT could be related to large earthquakes rupturing the MFT, given its proximity, the sense of motion, and the large distance that separates the MBT from the downdip end of the locked fault zone of the MHT fault system. We discuss these results and their implications for the frontal Himalayan thrust system.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 516
Author(s):  
Sotirios Verroios ◽  
Vasiliki Zygouri

The Gulf of Corinth is a rapidly opening area with high seismicity associated with extensive building collapses, destruction of cities, and even the deaths of inhabitants. Rapid residential development, especially in the southern part of the Gulf of Corinth, and the construction of crucial technical infrastructures necessitate understanding the activity across crustal-scale faults that host devastating earthquakes. The evolution of landforms affected by fault action is a dominant issue in geological science. In the present study, was selected the 20 km long Xilokastro pure normal fault. In this fault, we apply eight geomorphological indices in footwall catchments that drain perpendicular to its trace. In total, more than 5000 measurements were made in 102 catchments. The determination of geomorphological indices requires the construction of morphological profiles either perpendicular to the faults or perpendicular to the main tributaries of the drainage basins under consideration through the use of the geographical information systems (ArcGIS platform). Τhe application of these indices along catchments draining the Xilokastro fault scarp show high active tectonics. Its high activity is evidenced by the high values of the length-slope index near the fault trace, the low values of the width to height ratio index, the strong asymmetry of the drainage basins, especially in the overlapping zones between its segments, and the elongated shape of the drainage basins. This study supports the idea that the application of a single morphometric index is unable to reflect the distribution of active tectonics across faults, which makes inevitable the systematic comparison of a series of tectonic morphometric indices from which a new combined index emerges (Iat). The Iat classifies the Xilokastro fault in the high degree of activity at a rate of 75% of its length.


Lithosphere ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 238-253 ◽  
Author(s):  
David A. Ferrill ◽  
Alan P. Morris ◽  
Ronald N. McGinnis ◽  
Kevin J. Smart ◽  
Morgan J Watson-Morris ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50° of slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Basin. A hummocky relief was detected at the eastern margin of Samos Basin probably representing volcanic rocks. The active tectonics characterized by N-S extension is very different from the Neogene tectonics of Samos Island characterized by NE-SW compression. The mainshock and most of the aftershocks of the October 2020 seismic activity occur on the prolongation of the north dipping E-W fault zone at about 12 km depth.


Sign in / Sign up

Export Citation Format

Share Document