Equatorial Atlantic sea surface temperature for the last 30 kyr: A comparison of U37k′, δ18O and foraminiferal assemblage temperature estimates

1994 ◽  
Vol 9 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Elisabeth L. Sikes ◽  
Lloyd D. Keigwin
2013 ◽  
Vol 140 (682) ◽  
pp. 1700-1714 ◽  
Author(s):  
Gaëlle de Coëtlogon ◽  
Marion Leduc-Leballeur ◽  
Rémi Meynadier ◽  
Sophie Bastin ◽  
Moussa Diakhaté ◽  
...  

2016 ◽  
Vol 29 (22) ◽  
pp. 8083-8101 ◽  
Author(s):  
Allyson Rugg ◽  
Gregory R. Foltz ◽  
Renellys C. Perez

Abstract This study examines the causes of observed sea surface temperature (SST) anomalies in the tropical North Atlantic between 1982 and 2015. The emphasis is on the boreal winter and spring seasons, when tropical Atlantic SSTs project strongly onto the Atlantic meridional mode (AMM). Results from a composite analysis of satellite and reanalysis data show important forcing of SST anomalies by wind-driven changes in mixed layer depth and shortwave radiation between 5° and 10°N, in addition to the well-known positive wind–evaporation–SST and shortwave radiation–SST feedbacks between 5° and 20°N. Anomalous surface winds also drive pronounced thermocline depth anomalies of opposite signs in the eastern equatorial Atlantic and intertropical convergence zone (ITCZ; 2°–8°N). A major new finding is that there is strong event-to-event variability in the impact of thermocline depth on SST in the ITCZ region, in contrast to the more consistent relationship in the eastern equatorial Atlantic. Much stronger anomalies of meridional wind stress, thermocline depth, and vertical turbulent cooling are found in the ITCZ region during a negative AMM event in 2009 compared to a negative event in 2015 and a positive event in 2010, despite SST anomalies of similar magnitude in the early stages of each event. The larger anomalies in 2009 led to a much stronger and longer-lived event. Possible causes of the inconsistent relationship between thermocline depth and SST in the ITCZ region are discussed, including the preconditioning role of the winter cross-equatorial SST gradient.


2021 ◽  
Author(s):  
Arthur Prigent ◽  
Rodrigue Anicet Imbol Koungue ◽  
Joke Lübbecke ◽  
Peter Brandt ◽  
Jan Harlaß ◽  
...  

<p>Since 2000, a substantial weakening in the equatorial and southeastern tropical Atlantic sea surface temperature (SST) variability is observed. Observations and reanalysis products reveal, for example, that relative to 1982–1999, the March‐April‐May SST variability in the Angola‐Benguela area (ABA) has decreased by more than 30%. Both equatorial remote forcing and local forcing are known to play an important role in driving SST variability in the ABA. Here we show that compared to 1982–1999, since 2000, equatorial remote forcing had less influence on ABA SSTs, whereas local forcing has become more important. In particular, the robust correlation between the equatorial zonal wind stress and the ABA SSTs has substantially weakened, suggesting less influence of Kelvin waves on ABA SSTs. Moreover, the strong correlation linking the South Atlantic Anticyclone and the ABA SSTs has reduced. Multidecadal surface warming of the ABA could also have played a role in weakening the interannual SST variability.</p><p>To investigate future changes in tropical Atlantic SST variability, an ensemble of nested high-resolution coupled model simulations under the global warming scenario RCP8.5 is analyzed. SST variability in both the ABA and equatorial cold tongue is found to decrease along with reduced western equatorial Atlantic zonal wind variability.  </p>


2021 ◽  
Author(s):  
Ze Zhang ◽  
Zhixiang Wang ◽  
Chunju Huang

<p>The Pliocene - Pleistocene period (3.6-1.8 Ma) was a significant global cooling time, from very warm, equable climates to high-amplitude glacial-interglacial cycles. The origin of glaciers in the Northern Hemisphere, and the mechanisms by which glacial cycles have expanded since the late Pliocene, remain a subject of ongoing discussion. The studies of the Pliocene orbital scale climate evolution mainly are focused on marine sediments and loess-paleosoil sequences, however, there are few records of continental lacustrine facies during this period. Here we present a 37.6 m high-resolution Sanmen lacustrine sequences during the Pliocene-Pleistocene transition period that indicates the astronomically controlling East Asian climate transition and the Sanmen paloelake evolution. The Rb/Sr series evolution was divided into two parts for astronomical analysis based on the obvious changes observed in curve shape and Evolutionary spectral analysis through the section: 7.4-19 and 19-45 m. Based on evaluation of average accumulation rates from paleomagnetic results, the dominated ~99-cm cycles in the 7.4 to 19 m intervals represent ~41 kyr obliquity cycles. The 19 to 45 m intervals show obvious cycles at ~232-cm, interpreting as ~100 kyr eccentricity. Astronomical tuning combined with paleomagnetic results has been used to establish the 3.83-2.32 Ma high-precision astronomical scale. Rb/Sr series reveals that ~100 kyr eccentricity was the dominant control on lake expansion for Sanmen paleolake evolutionary before 2.75 Ma, after that, dominant obliquity control. Based on re-established the meridional sea surface temperature (SST) gradient between polar Atlantic borehole ODP 982 and the equatorial Atlantic borehole ODP 662, results show that the meridional sea surface temperature gradients increased significantly at 2.75 Ma, with cyclicity changing from the dominant ~140 kyr and ~95 kyr cycles to ~41 kyr at 2.75 Ma, and is coeval with our Rb/Sr record in the Weihe Basin. Crossspectral analysis show that the Rb/Sr and meridional SST gradient are strongly coherent and almost in-phase at these primary orbital periods in the past between 3.83-2.32 Ma. Thus, we conclude that the reorganization of the East Asian climate system at ~2.75 Ma, which coincided with the expansion of Arctic ice sheet, was a response to a dramatic cooling of the global climate and obliquity-driven changes in meridional SST gradients.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Rodrigue Anicet Imbol Koungue ◽  
Peter Brandt ◽  
Joke Lübbecke ◽  
Arthur Prigent ◽  
Meike Sena Martins ◽  
...  

High interannual sea surface temperature anomalies of more than 2°C were recorded along the coasts of Angola and Namibia between October 2019 and January 2020. This extreme coastal warm event that has been classified as a Benguela Niño, reached its peak amplitude in November 2019 in the Angola Benguela front region. In contrast to classical Benguela Niños, the 2019 Benguela Niño was generated by a combination of local and remote forcing. In September 2019, a local warming was triggered by positive anomalies of near coastal wind-stress curl leading to downwelling anomalies through Ekman dynamics off Southern Angola and by anomalously weak winds reducing the latent heat loss by the ocean south of 15°S. In addition, downwelling coastal trapped waves were observed along the African coast between mid-October 2019 and early January 2020. Those coastal trapped waves might have partly emanated from the equatorial Atlantic as westerly wind anomalies were observed in the central and eastern equatorial Atlantic between end of September to early December 2019. Additional forcing for the downwelling coastal trapped waves likely resulted from an observed weakening of the prevailing coastal southerly winds along the Angolan coast north of 15°S between October 2019 and mid-February 2020. During the peak of the event, latent heat flux damped the sea surface temperature anomalies mostly in the Angola Benguela front region. In the eastern equatorial Atlantic, relaxation of cross-equatorial southerly winds might have contributed to the equatorial warming in November 2019 during the peak of the 2019 Benguela Niño. Moreover, for the first time, moored velocities off Angola (11°S) revealed a coherent poleward flow in the upper 100 m in October and November 2019 suggesting a contribution of meridional heat advection to the near-surface warming during the early stages of the Benguela Niño. During the Benguela Niño, a reduction of net primary production in the Southern Angola and Angola Benguela front regions was observed.


Sign in / Sign up

Export Citation Format

Share Document