Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation

1994 ◽  
Vol 99 (C12) ◽  
pp. 24584 ◽  
Author(s):  
Detlef Stammer ◽  
Carl Wunsch
2007 ◽  
Vol 37 (11) ◽  
pp. 2637-2651 ◽  
Author(s):  
Armin Köhl

Abstract In the Nordic seas the Lofoten Basin is a region of high mesoscale activity. The generation mechanism and the conditions for the stability of a quasi-permanent vortex in the center of the Lofoten Basin are studied with a high-resolution ocean circulation model and altimeter data. The vortex and its generation mechanism manifest themselves by a pronounced sea surface height (SSH) signature and variability, which are found to be in agreement with altimeter data. The vortex results primarily from anticyclonic eddies shed from the eastern branch of the Norwegian Atlantic Current, which propagate southwestward. The large-scale bottom depression of the Lofoten Basin plays a crucial role for attracting anticyclones into the trough and for enabling the dynamical stability of the vortex. The water mass characteristics of the anticyclone lead to enhanced atmospheric interaction (heat loss) during wintertime. The cold water trapped in the upper part of the vortex preconditions convection in the following winter. This positive feedback mechanism tends to deepen convection progressively within the upper part of the vortex.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2006 ◽  
Vol 36 (9) ◽  
pp. 1739-1750 ◽  
Author(s):  
Cécile Cabanes ◽  
Thierry Huck ◽  
Alain Colin de Verdière

Abstract Interannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°–20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N.


2021 ◽  
Author(s):  
Inger Bij de Vaate ◽  
Henrique Guarneri ◽  
Cornelis Slobbe ◽  
Martin Verlaan

<p>The existence of seasonal variations in major tides has been recognized since decades. Where Corkan (1934) was the first to describe the seasonal perturbation of the M2 tide, many others have studied seasonal variations in the main tidal constituents since. However, most of these studies are based on sea level observations from tide gauges and are often restricted to coastal and shelf regions. Hence, observed seasonal variations are typically dominated by local processes and the large-scale patterns cannot be clearly distinguished. Moreover, most tide models still perceive tides as annually constant and seasonal variation in tides is ignored in the correction process of satellite altimetry. This results in reduced accuracy of obtained sea level anomalies. </p><p>To gain more insight in the large-scale seasonal variations in tides, we supplemented the clustered and sparsely distributed sea level observations from tide gauges by the wealth of data from satellite altimeters. Although altimeter-derived water levels are being widely used to obtain tidal constants, only few of these implementations consider seasonal variation in tides. For that reason, we have set out to explore the opportunities provided by altimeter data for deriving seasonal modulation of the main tidal constituents. Different methods were implemented and compared for the principal tidal constituents and a range of geographical domains, using data from a selection of satellite altimeters. Specific attention was paid to the Arctic region where seasonal variation in tides was expected to be significant as a result of the seasonal sea ice cycle, yet data availability is particularly limited. Our study demonstrates the potential of satellite altimetry for the quantification of seasonal modulation of tides and suggests the seasonal modulation to be considerable. Already for M2 we observed changes in tidal amplitude of the order of decimeters for the Arctic region, and centimeters for lower latitude regions.</p><p> </p><div>Corkan, R. H. (1934). An annual perturbation in the range of tide. <em>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</em>, <em>144</em>(853), 537-559.</div>


Eos ◽  
2011 ◽  
Vol 92 (42) ◽  
pp. 372-372
Author(s):  
Colin Schultz

2008 ◽  
Vol 38 (12) ◽  
pp. 2685-2703 ◽  
Author(s):  
Signe Aaboe ◽  
Ole Anders Nøst

Abstract A linear diagnostic model, solving for the time-mean large-scale circulation in the Nordic seas and Arctic Ocean, is presented. Solutions on depth contours that close within the Nordic seas and Arctic Ocean are found from vorticity balances integrated over the areas enclosed by the contours. Climatological data for wind stress and hydrography are used as input to the model, and the bottom geostrophic flow is assumed to follow depth contours. Comparison against velocity observations shows that the simplified dynamics in the model capture many aspects of the large-scale circulation. Special attention is given to the dynamical effects of an along-isobath varying bottom density, which leads to a transformation between barotropic and baroclinic transport. Along the continental slope, enclosing both the Nordic seas and Arctic Ocean, the along-slope barotropic transport has a maximum in the Nordic seas and a minimum in the Canadian Basin with a difference of 9 Sv (1 Sv ≡ 106 m3 s−1) between the two. This is caused by the relatively lower bottom densities in the Canadian Basin compared to the Nordic seas and suggests that most of the barotropic transport entering the Arctic Ocean through the Fram Strait is transformed to baroclinic transport. A conversion from barotropic to baroclinic flow may be highly important for the slope–basin exchange in the Nordic seas and Arctic Ocean. The model has obvious shortcomings due to its simplicity. However, the simplified physics and the agreement with observations make this model an excellent framework for understanding the large-scale circulation in the Nordic seas and Arctic Ocean.


2013 ◽  
Vol 33 ◽  
pp. 3-12 ◽  
Author(s):  
C. Collins ◽  
A. Mascarenhas ◽  
R. Martinez

Abstract. From 27 March to 5 April 2009, upper ocean velocities between the Galápagos Islands and Ecuador were measured using a vessel mounted ADCP. A region of possible strong cross-hemisphere exchange was observed immediately to the east of the Galápagos, where a shallow (200 m) 300 km wide northeastward surface flow transported 7–11 Sv. Underlying this strong northeastward surface current, a southward flowing undercurrent was observed which was at least 600 m thick, 100 km wide, and had an observed transport of 7–8 Sv. Next to the Ecuador coast, the shallow (< 200 m) Ecuador Coastal Current was observed to extend offshore 100 km with strongest flow, 0.33 m s−1, near the surface. Immediately to the west of the Ecuador Coastal Current, flow was directed eastward and southward into the beginnings of the Peru-Chile Countercurrent. The integral of the surface currents between the Galápagos and Ecuador agreed well with observed sea level differences. Although the correlation of the sea level differences with large scale climate indices (Niño3 and the Southern Oscillation Index) was significant, more than half of the sea level variability was not explained. Seasonal variability of the sea level difference indicated that sea level was 2 cm higher at the Galápagos during late winter and early spring, which could be associated with the pattern of northward surface flows observed by R/V Knorr.


Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of the theory have reduced planetary fluids to warm/cold masses and determined their bulk thermal properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity is homogenized in moving masses. In a companion paper on the atmosphere, this upper bound is seen to reproduce the prevailing wind, forsaking therefore previous discordant explanations of the easterly trade and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Together, we posit that PV homogenization may provide a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring --- within the confine of the thermal differentiation.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1067-1090 ◽  
Author(s):  
Marie-Isabelle Pujol ◽  
Yannice Faugère ◽  
Guillaume Taburet ◽  
Stéphanie Dupuy ◽  
Camille Pelloquin ◽  
...  

Abstract. The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features.An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than  ∼  250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.


Sign in / Sign up

Export Citation Format

Share Document