Mesozoic Paleoenvironment of the Rifted Margin off NW Australia (ODP Legs 122/123)

Author(s):  
Ulrich von Rad ◽  
Neville F. Exon ◽  
Ron Boyd ◽  
Bilal U. Haq
Keyword(s):  
2019 ◽  
Author(s):  
Kendra E. Murray ◽  
◽  
Marin K. Clark ◽  
Marin K. Clark ◽  
Nathan A. Niemi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Lu ◽  
Ritske S. Huismans

AbstractBreakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50–80 °C, significantly smaller than previously suggested.


2013 ◽  
Vol 170 (2) ◽  
pp. 365-377 ◽  
Author(s):  
G. M. Gibson ◽  
J. M. Totterdell ◽  
L. T. White ◽  
C. H. Mitchell ◽  
A. R. Stacey ◽  
...  

2018 ◽  
Vol 55 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Dominik Letsch ◽  
Mohamed El Houicha ◽  
Albrecht von Quadt ◽  
Wilfried Winkler

This article provides stratigraphic and geochronological data from a central part of Gondwana’s northern margin — the Moroccan Meseta Domain. This region, located to the north of the Anti-Atlas area with extensive outcrops of Precambrian and lower Paleozoic rocks, has hitherto not received much attention with regard to its Precambrian geology. Detrital and volcanic zircon ages have been used to constrain sedimentary depositional ages and crustal affinities of sedimentary source rocks in stratigraphic key sections. Based on this, a four-step paleotectonic evolution of the Meseta Domain from the Ediacaran until the Early Ordovician is proposed. This evolution documents the transition from a terrestrial volcanic setting during the Ediacaran to a short-lived carbonate platform setting during the early Cambrian. The latter then evolved into a rifted margin with deposition of thick siliciclastic successions in graben structures during the middle to late Cambrian. The detritus in these basins was of local origin, and a contribution from a broader source area (encompassing parts of the West African Craton) can only be demonstrated for postrifting, i.e., laterally extensive sandstone bodies that seal the former graben. In a broader paleotectonic context, it is suggested that this Cambrian rifting is linked to the opening of the Rheic Ocean, and that several peri-Gondwanan terranes (Meguma and Cadomia–Iberia) may have been close to the Meseta Domain before drifting, albeit some of them seem to have been constituted by a distinctly different basement.


Author(s):  
Stefano Tavani ◽  
Pablo Granado ◽  
Amerigo Corradetti ◽  
Giovanni Camanni ◽  
Gianluca Vignaroli ◽  
...  

In accretionary convergent margins, the subduction interface is formed by a lower plate décollement above which sediments are scraped off and incorporated into the accretionary wedge. During subduction, the basal décollement is typically located within or at the base of the sedimentary pile. However, the transition to collision implies the accretion of the lower plate continental crust and deformation of its inherited rifted margin architecture. During this stage, the basal décollement may remain confined to shallow structural levels as during subduction or re-localize into the lower plate middle-lower crust. Modes and timing of such re-localization are still poorly understood. We present cases from the Zagros, Apennines, Oman, and Taiwan belts, all of which involve a former rifted margin and point to a marked influence of inherited rift-related structures on the décollement re-localization. A deep décollement level occurs in the outer sectors of all of these belts, i.e., in the zone involving the proximal domain of pre-orogenic rift systems. Older—and shallower—décollement levels are preserved in the upper and inner zones of the tectonic pile, which include the base of the sedimentary cover of the distal portions of the former rifted margins. We propose that thinning of the ductile middle crust in the necking domains during rifting, and its complete removal in the hyperextended domains, hampered the development of deep-seated décollements during the inception of shortening. Progressive orogenic involvement of the proximal rift domains, where the ductile middle crust was preserved upon rifting, favors its reactivation as a décollement in the frontal portion of the thrust system. Such décollement eventually links to the main subduction interface, favoring underplating and the upward motion of internal metamorphic units, leading to their final emplacement onto the previously developed tectonic stack.


2021 ◽  
pp. M57-2017-43
Author(s):  
Michael B. W. Fyhn

AbstractThe little explored central East Greenland margin contains thick sedimentary accumulations confined within the Scoresbysund Basin. The geological evolution of the area distinguishes from other parts of East Greenland. Even so, resemblances with the prospective basins onshore and offshore farther north probably exist, and the margin may hold a real petroleum potential. The Scoresbysund Rifted Margin Composite Tectonic-Sedimentary Element delineates the oldest part of the Scoresbysund Basin. It formed through multiple phases of rifting, volcanism, uplift and thermal subsidence between Devonian and Miocene time. The development of the composite tectonic-sedimentary element concluded with the latest Oligocene or early Miocene continental break-up of the Jan Mayen microcontinent and East Greenland. The Scoresbysund Rifted Margin Composite Tectonic-Sedimentary Element contains approximately 4 km of Eocene-lower Miocene fan-delta deposits that accumulated during down-faulting along the East Greenland Escarpment and farther seawards intercalate with basalts. The fan-delta deposits rest on Paleocene basalts that most likely cover Paleozoic-Mesozoic strata. Equivalent to onshore, the deeply buried section probably include source rock and reservoir intervals of Carboniferous, Permian and Mesozoic age. Together with the major fault structures existing in the western part of the area, this may form the basis for a working petroleum system.


Sign in / Sign up

Export Citation Format

Share Document