Rift inheritance controls the switch from thin- to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition

Author(s):  
Stefano Tavani ◽  
Pablo Granado ◽  
Amerigo Corradetti ◽  
Giovanni Camanni ◽  
Gianluca Vignaroli ◽  
...  

In accretionary convergent margins, the subduction interface is formed by a lower plate décollement above which sediments are scraped off and incorporated into the accretionary wedge. During subduction, the basal décollement is typically located within or at the base of the sedimentary pile. However, the transition to collision implies the accretion of the lower plate continental crust and deformation of its inherited rifted margin architecture. During this stage, the basal décollement may remain confined to shallow structural levels as during subduction or re-localize into the lower plate middle-lower crust. Modes and timing of such re-localization are still poorly understood. We present cases from the Zagros, Apennines, Oman, and Taiwan belts, all of which involve a former rifted margin and point to a marked influence of inherited rift-related structures on the décollement re-localization. A deep décollement level occurs in the outer sectors of all of these belts, i.e., in the zone involving the proximal domain of pre-orogenic rift systems. Older—and shallower—décollement levels are preserved in the upper and inner zones of the tectonic pile, which include the base of the sedimentary cover of the distal portions of the former rifted margins. We propose that thinning of the ductile middle crust in the necking domains during rifting, and its complete removal in the hyperextended domains, hampered the development of deep-seated décollements during the inception of shortening. Progressive orogenic involvement of the proximal rift domains, where the ductile middle crust was preserved upon rifting, favors its reactivation as a décollement in the frontal portion of the thrust system. Such décollement eventually links to the main subduction interface, favoring underplating and the upward motion of internal metamorphic units, leading to their final emplacement onto the previously developed tectonic stack.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Lu ◽  
Ritske S. Huismans

AbstractBreakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50–80 °C, significantly smaller than previously suggested.


2021 ◽  
Author(s):  
Rubén Díez Fernández ◽  
Jerónimo Matas ◽  
Ricardo Arenas ◽  
Luis Miguel Martín-Parra ◽  
Sonia Sánchez Martínez ◽  
...  

ABSTRACT The Porvenir serpentinites are an ∼600-m-thick body of meta-peridotites exposed in SW Iberia (Variscan Orogen). The serpentinites occur as a horse within a Carboniferous, out-of-sequence thrust system (Espiel thrust). This thrust juxtaposes the serpentinites and peri-Gondwanan strata onto younger peri-Gondwanan strata, with the serpentinites occupying an intermediate position. Reconstruction of the pre-Espiel thrust structure results in a vertical juxtaposition of terranes: Cambrian strata below, Porvenir serpentinites in the middle, and the strata at the footwall to the Espiel thrust culminating the tectonic pile. The reconstructed tectonic pile accounts for yet another major thrusting event, since a section of upper mantle (Porvenir serpentinites) was sandwiched between two tectonic slices of continental crust (a suture zone sensu lato). The primary lower plate to the suture is now overlying the upper plate due to the Espiel thrust. Lochkovian strata in the upper plate and the Devonian, NE-verging folds in the lower plate suggest SW-directed accretion of the lower plate during the Devonian, i.e., Laurussia-directed underthrusting for the closure of a Devonian intra-Gondwana basin. Obduction of the Porvenir serpentinites was a two-step process: one connected to the development of a Devonian suture zone, and another related to out-of-sequence thrusting that cut the suture zone and brought upward a tectonic slice of upper mantle rocks hosted in that suture. The primary Laurussia-dipping geometry inferred for this partially obducted suture zone fits the geometry, kinematics, and timing of the Late Devonian suture zone exposed in NW Iberia and may represent the continuation of such suture into SW Iberia.


2020 ◽  
Vol 117 (45) ◽  
pp. 27877-27883
Author(s):  
Jason P. Morgan ◽  
Jorge M. Taramón ◽  
Mario Araujo ◽  
Jörg Hasenclever ◽  
Marta Perez-Gussinye

Volcanic rifted margins are typically associated with a thick magmatic layer of seaward dipping reflectors and anomalous regional uplift. This is conventionally interpreted as due to melting of an arriving mantle plume head at the onset of rifting. However, seaward dipping reflectors and uplift are sometimes asymmetrically distributed with respect to the subsequent plume track. Here we investigate if these asymmetries are induced by preexisting lateral variations in the thickness of continental lithosphere and/or lithospheric stretching rates, variations that promote lateral sublithospheric flow of plume material below only one arm of the extending rift. Using three-dimensional numerical experiments, we find that South Atlantic rifting is predicted to develop a strong southward asymmetry in its distribution of seaward dipping reflectors and associated anomalous relief with respect to the Tristan Plume that “drove” this volcanic rifted margin, and that the region where plume material drains into the rift should experience long-lived uplift during rifting—both as observed. We conclude that a mantle plume is still needed to source the anomalously hot sublithospheric material that generates a volcanic rifted margin, but lateral along-rift flow from this plume, not a broad starting plume head, is what controls when and where a volcanic rifted margin will form.


2017 ◽  
Vol 5 (3) ◽  
pp. SK161-SK177 ◽  
Author(s):  
Sverre Planke ◽  
John M. Millett ◽  
Dwarika Maharjan ◽  
Dougal A. Jerram ◽  
Mohamed Mansour Abdelmalak ◽  
...  

Voluminous igneous complexes are commonly present in sedimentary basins on volcanic rifted margins, and they represent a challenge for petroleum explorationists. A [Formula: see text] industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image subbasalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intrabasalt structures. Detailed seismic geomorphological interpretation of the top-basalt horizon, locally calibrated with high-resolution P-Cable wide-azimuth data, reveals new insight into the late-stage development of the volcanic flow fields and the kilometer-high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with a comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by preexisting structural highs, and these highs are locally bypassed by the lava. Volcanogenic debris flows are well-imaged on the escarpment horizon, along with large-scale large slump blocks. Similar features exist in active volcanic environments, e.g., on the south coast of Hawaii. Numerous postvolcanic extensional faults and incised channels cut into the marginal high and the escarpment, and we found that the area was geologically active after the volcanism ceased. In summary, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins. Our study demonstrates great promise for further understanding the igneous development of offshore basins as more high-quality 3D seismic data become available.


2020 ◽  
Author(s):  
Yang Liu ◽  
Ziyin Wu ◽  
Jihong Shang ◽  
Dineng Zhao ◽  
Jieqiong Zhou

<p>Different tectonic backgrounds often produce different subduction mechanisms. The Mariana subduction zone is a typical erosive margin, and the mode of material transportation is mainly controlled by subduction erosion, while the subduction process in the northern Manila subduction zone is dominated by subduction accretion. However, there are little comparative investigation about the subduction mechanisms between the Mariana subduction zone and northern Manila subduction zone. In this study, the high-resolution bathymetric data obtained by using the multi-source data fusion method and collected multichannel seismic profiles are used to research the subduction mechanisms and to develop the subduction modes for the Mariana subduction zone and northern Manila subduction zone. We propose that the Mariana subduction zone formed at the intra-oceanic convergent margins with rare continental sediments tends to occur subduction erosion. A rough seafloor morphology (e.g. seamounts, horst and graben topography) of the subducting Pacific Plate, with a convergence rate of 8.4 cm/yr, and the steep slope of the inner trench, promote subduction erosion at the Mariana margin. The northern Manila subduction zone is the result of the convergence of ocean-continent plates. The continental sediments of the overlying plate usually undergo subduction accretion during the subducting process, forming an accretionary wedge along the northern Manila margin. With the continuously subducting of the continental crust, a series of folds and thrust faults are formed inside the accretionary wedge. Both the Mariana subduction zone and northern Manila subduction zone are distinctive types of the convergent margins in the world. The comparison of subduction mechanisms has important reference significance for the study of the subduction process, evolution and inter-plate interaction of global intra-oceanic and ocean-continent convergent margins.</p><p></p>


2003 ◽  
Vol 174 (5) ◽  
pp. 481-496 ◽  
Author(s):  
Jean Delteil ◽  
Jean-François Stephan ◽  
Mikaël Attal

Abstract Structural investigations reveal intense and heterogeneous deformation of the sedimentary cover attached to the basement complex of the southern Argentera and Barrot massifs (southernmost External Basement Massifs of the French Alps). Permian and early Triassic syn-depositional extensional tectonics imparted a tilted block pattern to the massifs. An early Miocene first stage of Alpine compression caused pervasive cleavage. This cleavage was controlled by the former pre-existing faults but is nevertheless consistent with NNE contraction. Where regional shortening is orthogonal to the trend of pre-existing faults the pervasive deformation produced either irrotational compressional strain (where no fault inversion occurred), or rotational compressional strain involving syn-cleavage shearing (where faults with favorable paleo-dip were inverted). Where the shortening direction is oblique to the paleo-fault trends, a component of strike-slip movement may locally prevail. A 22 %, N020o directed horizontal shortening, of 11 km, has been calculated based on deformed sedimentary markers in the Permian series and parallel folds in Lower Triassic quartzite. A shallower deformation as brittle reverse faults postdates the cleavage at the southwestern tip of the Argentera Massif and accounts for 4 km of extra shortening. Both types of deformation are connected at depth to a crustal blind thrust system and the Argentera Massif is over-thrust to the south-southwest. The observed strain indicates the Argentera Massif area underwent, from earliest Miocene to Present, a NNE to N rotating compression at distance from the left-lateral southwestern boundary of the Adria block.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2019-157 ◽  
Author(s):  
M. Ford ◽  
J. Vergés

In this field study we reinterpret the narrow eastern North Pyrenean Zone, France, as an inverted salt-rich transtensional rift system based on identification of halokinetic depositional sequences across rift platform to distal rift margin domains with a cumulative throw of >2.8 km on steep Cretaceous faults. The rift platform records extension on detached rotational faults above Triassic evaporites from Jurassic to Aptian with uplift and erosion during the Albian. Transtensional Aptian–Albian minibasins align along the salt-rich rift margin fault zone. In the Aptian–Albian main rift large en echelon synclinal minibasins developed between salt walls, although Jurassic diapiric evolution is likely. Upper Cretaceous units locally record continuing diapirism. The Boucheville and Bas Agly depocentres, altered by synrift HT metamorphism, form the distal rift domain terminating south against the North Pyrenean Fault. The narrowness of the Pyrenean rift, shape of minibasins, en echelon oblique synclinal depocentres and folds coupled with a discontinuous distribution and intensity of HT metamorphism support a transtensional regime along the Iberia–Europe plate margin during late Early and early Late Cretaceous. In this model, the distal European margin comprises deep faults limiting laterally discontinuous crustal domains and ‘hot’ pull-apart basins with mantle rocks directly beneath sedimentary cover.Supplementary material: A table summarizing the stratigraphy of the NE Pyrenees and an interpreted Google Earth view of the Quillan syncline and minibasin are available at https://doi.org/10.6084/m9.figshare.c.5100036


2021 ◽  
Author(s):  
Antoine Mercier ◽  
Philippe Hervé Leloup ◽  
Gabriel Courrioux ◽  
Séverine Caritg ◽  
Simon Lopez ◽  
...  

<p>Since two centuries the European Alps are a natural laboratory to study continental lithosphere deformation during mountain building. Since the early studies, a constant question has been to evaluate the importance of vertical versus horizontal displacements in the building of reliefs. Whilst the occurrence of large thrust sheets, as initially proposed from field observations, are now well explained in the frame of plate tectonics, controversies still arise on the precise geometry, amount, and timing of major thrusting during the orogeny.</p><p>We present a new detailed 3D structural study of the cover/basement relationships in the Chamonix synclinorium in between the Mont-Blanc (MB) and Aiguilles Rouges (AR) ranges. These massifs are two of the main external basement ranges of the western Alps.  The study allows deciphering the area structural history: the Mesozoic sedimentary cover has been thrust at least 10km NW above the Helvetic Basal Décollement (HBD) before to be offset by late steep thrusts during exhumation in the Miocene.</p><p>Such interpretation fundamentally diverges from the classical view of the sedimentary cover of the Chamonix synclinorium being expulsed from a former graben during a single deformation phase and implies that a major thrust phase lasting ~10 Ma has been overlooked. Our observations show that the HBD was a major thrust system active between ~30 and ~20 Ma, possibly until 15 Ma, with a shortening of more than 10km in the south to 20km in the north. It extends below most of the subalpine ranges and emerges in front of the Bauges and within the Chartreuse and Vercors massifs, and was rooted east of the External Cristalline Massifs (Mont-Blanc and Belledonne). During the Miocene, the HBD was cut by steep reverse faults and uplifted above the basement culmination of the External Cristalline Massifs obscuring its continuity and precluding its recognition as a major structure even if it was previously described at several localities.</p>


1999 ◽  
Vol 136 (2) ◽  
pp. 133-152 ◽  
Author(s):  
MARCO BONINI

The Chianti Mountains is an important sector of an E-verging regional thrust-related fold (the so-called Tuscan Nappe) extending along the whole length of the Northern Apennines. This thrust system involves the Tuscan Sequence superposing the Macigno sandstones onto Cervarola-Falterona sandstones, both of which are sedimented in adjacent foredeep basins. Detailed field mapping and analysis of superposition relations among tectonic structures, as well as correlation between structures and syntectonic deposition, has allowed Chianti Mountain evolution to be interpreted in terms of three main stages of deformation.The D1 stage resulted in the NE-directed synsedimentary thrusting of the Macigno onto the Cervarola-Falterona sandstones, while large NE to ENE-vergent thrust-related folds developed during the two successive deformation stages (D2 and D3). Fault-propagation folds developed during the D2 stage, and were affected by the Main Chianti Mountains Thrust (MCMT) during the successive D3 stage. In particular, the D3 stage has been correlated to the development, during the Pliocene period, of the hinterland Upper Valdarno Basin, which was previously considered to be an extensional basin. In fact, this continental basin formed along the eastern margin of the Chianti Mountains, ahead of the MCMT that also produced a shortening of the basin fill. With the beginning of the Quaternary period, the tectonic regime switched to extensional, as manifested by the development of a normal fault system on the opposite basin margin.The data presented here allow us to infer that the Chianti Mountains thrust system (D2 and D3) developed during a time interval spanning from the Late Miocene (∼12 Ma) until the Late Pliocene (∼2 Ma) periods. In the Northern Apennines, polyphase thrusting recorded by cover rocks has been related to the activity of basement thrusts, which have been recently evidenced by geophysical data. In this context, the two latest stages of deformation recognised in the Chianti Mountains have been attributed to the activity of the Abetone–Cetona crustal thrust, the deformational effects of which propagated forward in the sedimentary cover.


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 425-446 ◽  
Author(s):  
Ralph Hinsch ◽  
Chloé Asmar ◽  
Muhammad Nasim ◽  
Muhammad Asif Abbas ◽  
Shaista Sultan

Abstract. The Kirthar Fold Belt is part of the transpressive transfer zone in Pakistan linking the Makran accretionary wedge with the Himalaya orogeny. The region is deforming very obliquely, nearly parallel to the regional S–N plate motion vector, indicating strong strain partitioning. In the central Kirthar Fold Belt, folds trend roughly N–S and their structural control is poorly understood. In this study, we use newly acquired 2-D seismic data with pre-stack depth migration, published focal mechanisms, surface and subsurface geological data, and structural modelling with restoration and balancing to constrain the structural architecture and kinematics of the Kirthar Fold Belt. The central Kirthar Fold Belt is controlled by Pliocene to recent linked thick-skinned to thin-skinned deformation. The thick-skinned faults are most likely partially inverting rift-related normal faults. Focal mechanisms indicate dip-slip faulting on roughly N–S-trending faults with some dip angles exceeding 40∘, which are considered too steep for newly initiated thrust faults. The hinterland of the study area is primarily dominated by strike-slip faulting. The inverting faults do not break straight through the thick sedimentary column of the post-rift and flexural foreland; rather, the inversion movements link with a series of detachment horizons in the sedimentary cover. Large-scale folding and layer-parallel shortening has been observed in the northern study area. In the southern study area progressive imbrication of the former footwall of the normal fault is inferred. Due to the presence of a thick incompetent upper unit (Eocene Ghazij shales) these imbricates develop as passive roof duplexes. In both sectors the youngest footwall shortcut links with a major detachment and the deformation propagates to the deformation front, forming a large fault-propagation fold. Shortening within the studied sections is calculated to be 18 %–20 %. The central Kirthar Fold Belt is a genuine example of a hybrid thick- and thin-skinned system in which the paleogeography controls the deformation. The locations and sizes of the former rift faults control the location and orientation of the major folds. The complex tectonostratigraphy (rift, post-rift, flexural foreland) and strong E–W gradients define the mechanical stratigraphy, which in turn controls the complex thin-skinned deformation.


Sign in / Sign up

Export Citation Format

Share Document