Right-lateral displacements and the Holocene slip rate associated with prehistoric earthquakes along the Southern Panamint Valley Fault Zone: Implications for southern Basin and Range tectonics and Coastal California deformation

1990 ◽  
Vol 95 (B4) ◽  
pp. 4857 ◽  
Author(s):  
Peizhen Zhang ◽  
Michael Ellis ◽  
D. B. Slemmons ◽  
Fengying Mao
2020 ◽  
Vol 133 (1-2) ◽  
pp. 307-324
Author(s):  
Zachery M. Lifton ◽  
Jeffrey Lee ◽  
Kurt L. Frankel ◽  
Andrew V. Newman ◽  
Jeffrey M. Schroeder

Abstract The White Mountains fault zone in eastern California is a major fault system that accommodates right-lateral shear across the southern Walker Lane. We combined field geomorphic mapping and interpretation of high-resolution airborne light detection and ranging (LiDAR) digital elevation models with 10Be cosmogenic nuclide exposure ages to calculate new late Pleistocene and Holocene right-lateral slip rates on the White Mountains fault zone. Alluvial fans were found to have ages of 46.6 + 11.0/–10.0 ka and 7.3 + 4.2/–4.5 ka, with right-lateral displacements of 65 ± 13 m and 14 ± 5 m, respectively, yielding a minimum average slip rate of 1.4 ± 0.3 mm/yr. These new slip rates help to resolve the kinematics of fault slip across this part of the complex Pacific–North American plate boundary. Our results suggest that late Pleistocene slip rates on the White Mountains fault zone were significantly faster than previously reported. These results also help to reconcile a portion of the observed discrepancy between modern geodetic strain rates and known late Pleistocene slip rates in the southern Walker Lane. The total middle to late Pleistocene slip rate from the southern Walker Lane near 37.5°N was 7.9 + 1.3/–0.6 mm/yr, ∼75% of the observed modern geodetic rate.


1969 ◽  
Vol 6 (5) ◽  
pp. 1095-1104 ◽  
Author(s):  
Gerhard H. Eisbacher

The east-trending Cobequid Fault separates pre-Carboniferous rocks of the Cobequid Mountains to the north from Carboniferous clastic rocks along the southern flank of the mountains. A detailed study of the fault zone revealed tie predominance of right-lateral displacements. The orientation of the stress field that existed during deformation along the fault trace was determined by the study of systematic fractures in pebbles within Carboniferous conglomerate. Maximum compressive stress was aligned in a NW–SE direction, being compatible with the orientation of the displacement vectors in the fault zone. Transcurrent movement along the Cobequid Fault occurred in late Pennsylvanian time and involved both Carboniferous and pre-Carboniferous rocks; total displacement is unknown.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Gonzalo Cid Villegas ◽  
Carlos Mendoza ◽  
Luca Ferrari

  We present a Geographic Information System (GIS) database that synthesizes information on the geometry, the sense of movement and the last displacement on known Quaternary faults in Mexico. Faults are classified according to the age of the last known geologic displacement and the quantity and quality of the information available. Class A faults have documented displacement in the Holocene; Class B faults have Pleistocene displacement with possible reactivation in the Holocene; and Class C faults have a last known displacement in the Pleistocene. The database includes the fault name, the type of fault, the fault geometry, the fault length, the evidence for displacement, the slip rate, the recurrence interval, and the size of the most recent earthquake associated with each fault. The database compiles Quaternary fault information for Mexico that can be readily updated as more geologic data become available.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


2007 ◽  
Vol 40 (4) ◽  
pp. 1586 ◽  
Author(s):  
N. Palyvos ◽  
D. Pantosti ◽  
L. Stamatopoulos ◽  
P. M. De Martini

In this communication we discuss reconnaissance geomorphological observations along the active Psathopyrgos and Rion-Patras (NE part) fault zones. These fault zones correspond to more or less complex rangefronts, the geomorphic characteristics of which provide hints on the details of the fault zone geometries, adding to the existing geological data in the bibliography. Aiming at the identification of locations suitable or potentially suitable for geomorphological and geological studies for the determination of fault slip rates in the Holocene, we describe cases of faulted Holocene landforms and associated surficial deposits. We also discuss problems involved in finding locations suitable for geological (paleoseismological) studies for the determination of the timing of recent earthquake ruptures, problems due to both man-made and natural causes.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


Sign in / Sign up

Export Citation Format

Share Document