Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer

Tellus B ◽  
2001 ◽  
Vol 53 (4) ◽  
pp. 462-478 ◽  
Author(s):  
E. D. NILSSON ◽  
J. PAATERO ◽  
M. BOY
2000 ◽  
Vol 31 ◽  
pp. 600-601 ◽  
Author(s):  
E.D. Nilsson ◽  
Ü. Rannik ◽  
J. Paatero ◽  
M. Boy ◽  
C. O'Dowd ◽  
...  

2006 ◽  
Vol 6 (5) ◽  
pp. 10425-10462 ◽  
Author(s):  
E. D. Nilsson ◽  
M. Kulmala

Abstract. New atmospheric particles with diameters of 3–10 nm and their subsequent growth to cloud condensation nucleus have been observed at various places in the European boundary layer. These events have been observed simultaneously within wide geographical areas (over 1000 km) in connection to specific weather systems, the cold air behind cyclones. Here we show that atmospheric aerosol formation (i.e. nucleation and initial growth) is favoured by the outbreak of cold Arctic air over northern Europe. Aerosol formation was about twice as common in Arctic air as in sub-Polar air, and even more so compared to other air masses. The most important general factor favouring aerosol formation in Arctic air and marine air was weaker competing condensational sink (CS) for the precursor gases (less pre-existing aerosols), while high CS prevented aerosol formation in heated sub-Polar air and mid-latitude air. High SO2 levels favoured nucleation in continental air and high UV-B radiation in sub-tropical air. The critical factor that determined if aerosol formation would start on a day with Arctic air was the UV-B radiation. The same applied to sub-Polar air and continental air, while increased SO2 concentration could trigger formation in heated sub-Polar and mid-latitude air, and reduced CS could cause formation in mid-latitude, marine or mixed/transient air. We speculate that strong emissions of volatile organic compounds from the Boreal forest and strong boundary layer dynamics may have caused aerosol formation in sub-Polar air masses and air in transition from a marine to a continental character. The monthly frequency of Arctic air masses and the probability for photo-chemically driven aerosol formation explains the observed annual cycle in monthly particle formation frequency as well as much of the inter annual variability. The same cyclones that transport cold, clean air from the Arctic to Europe will also transport warm polluted air in the other direction, which help cause the Arctic Haze phenomena. The cyclones have a key role for the atmospheric aerosol life cycle in mid to high latitudes. Due to the observed growth to the size of CCN in one to two days, there is a potential feed back from the effects on the CCN population and cloud albedo even within the same weather system, but also on the climatic time scale.


Tellus B ◽  
2001 ◽  
Vol 53 (4) ◽  
pp. 441-461 ◽  
Author(s):  
E. D. NILSSON ◽  
Ü. RANNIK ◽  
M. KULMALA ◽  
G. BUZORIUS ◽  
C. D. O'DOWD

2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2021 ◽  
Author(s):  
Faezeh Abbasi ◽  
Saeed Bazgeer ◽  
Parviz Rezazadeh Kalehbasti ◽  
Ebrahim Asadi Oskoue ◽  
Masoud Haghighat ◽  
...  

Abstract It is a scientifically novel insight to classify the climate of a region using empirical methods together with clustering technique for practical usage in agricultural and industrial sectors. The main objective of this study is to compare the empirical approach to climate classification (Thornthwaite and Mather, De Martonne, the Extended De Martonne and the IRIMO (I.R. of Iran Meteorological Organization)) with clustering technique, Ward’s hierarchical agglomerative method over Iran. The maximum and minimum temperatures and precipitation data of 356 weather stations are used from IRIMO databases. 35 synoptic weather stations are selected for detailed inspection based on appropriate geographical distribution and availability of a continuous 50-year data (1966–2015). Compared with the three empirical reference methods of climate classification, the Thornthwaite and Mather method clearly shows the role of water bodies and air masses for determining the climate type in different regions. This factor is identified as the main advantage of this method over the three others. This superiority is the most visible for the highlands/mountainous regions, in the vicinity of the Zagros Mountains, and in the western regions of Iran. As a case in point, while in the De Martonne and the Extended De Martonne methods, the Zagros storm cell is climatically classified similar to patchy areas in Caspian Sea coastal zone, this cell is correctly identified as a separate zone in the Thornthwaite and Mather method. The results revealed that the clusters obtained from Ward’s algorithm are comparable to those of empirical climate classifications, particularly Thornthwaite and Mather method.


2011 ◽  
Vol 11 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
J. Lauros ◽  
A. Sogachev ◽  
S. Smolander ◽  
H. Vuollekoski ◽  
S.-L. Sihto ◽  
...  

Abstract. We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer.


2019 ◽  
Vol 19 (19) ◽  
pp. 12477-12494 ◽  
Author(s):  
Armin Sigmund ◽  
Korbinian Freier ◽  
Till Rehm ◽  
Ludwig Ries ◽  
Christian Schunk ◽  
...  

Abstract. To assist atmospheric monitoring at high-alpine sites, a statistical approach for distinguishing between the dominant air masses was developed. This approach was based on a principal component analysis using five gas-phase and two meteorological variables. The analysis focused on the Schneefernerhaus site at Zugspitze Mountain, Germany. The investigated year was divided into 2-month periods, for which the analysis was repeated. Using the 33.3 % and 66.6 % percentiles of the first two principal components, nine air mass regimes were defined. These regimes were interpreted with respect to vertical transport and assigned to the BL (recent contact with the boundary layer), UFT/SIN (undisturbed free troposphere or stratospheric intrusion), and HYBRID (influences of both the boundary layer and the free troposphere or ambiguous) air mass classes. The input data were available for 78 % of the investigated year. BL accounted for 31 % of the cases with similar frequencies in all seasons. UFT/SIN comprised 14 % of the cases but was not found from April to July. HYBRID (55 %) mostly exhibited intermediate characteristics, whereby 17 % of the HYBRID class suggested an influence from the marine boundary layer or the lower free troposphere. The statistical approach was compared to a mechanistic approach using the ceilometer-based mixing layer height from a nearby valley site and a detection scheme for thermally induced mountain winds. Due to data gaps, only 25 % of the cases could be classified using the mechanistic approach. Both approaches agreed well, except in the rare cases of thermally induced uplift. The statistical approach is a promising step towards a real-time classification of air masses. Future work is necessary to assess the uncertainty arising from the standardization of real-time data.


2014 ◽  
Vol 14 (23) ◽  
pp. 12745-12762 ◽  
Author(s):  
B. Vogel ◽  
G. Günther ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Hoor ◽  
...  

Abstract. Enhanced tropospheric trace gases such as CO, CH4 and H2O and reduced stratospheric O3 were measured in situ in the lowermost stratosphere over northern Europe on 26 September 2012 during the TACTS aircraft campaign. The measurements indicate that these air masses clearly differ from the stratospheric background. The calculation of 40-day backward trajectories with the trajectory module of the CLaMS model shows that these air masses are affected by the Asian monsoon anticyclone. Some air masses originate from the boundary layer in Southeast Asia/West Pacific and are rapidly lifted (1–2 days) within a typhoon up to the outer edge of the Asian monsoon anticyclone. Afterwards, the air parcels are entrained by the anticyclonic circulation of the Asian monsoon. The subsequent long-range transport (8–14 days) of enhanced water vapour and pollutants to the lowermost stratosphere in northern Europe is driven by eastward transport of tropospheric air from the Asian monsoon anticyclone caused by an eddy shedding event. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway that may carry boundary emissions from Southeast Asia/West Pacific within approximately 5 weeks to the lowermost stratosphere in northern Europe.


Sign in / Sign up

Export Citation Format

Share Document