Oxidative stress may develop endometrial autoimmune disorders

2002 ◽  
Vol 48 (3) ◽  
pp. 136-137
Author(s):  
A. Iborra ◽  
J.R. Palacio ◽  
M. Mayorga ◽  
E. Garcia ◽  
Z. Ulcova-Gallova ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. 1-6
Author(s):  
Erhan Yarar ◽  

Inflammation and oxidative stress are involved in many diseases. Chronic inflammation may be caused by autoimmune disorders, untreated infections, or illnesses, and often plays a role in conditions such as asthma, cancer, and diabetes.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Carmen Mannucci ◽  
Marco Casciaro ◽  
Emanuela Elisa Sorbara ◽  
Fabrizio Calapai ◽  
Eleonora Di Salvo ◽  
...  

Antioxidant mechanisms are constituted of enzymes, endogenous, and non-enzymatic, exogenous, which have the role of counterbalancing oxidative stress. Intake of these compounds occurs in the diet. Vegetables, plants, and fruits contain a wide range of alkaloids, polyphenols, and terpenoids which are called “phytochemicals”. Most of these substances are responsible for the positive properties of fruits and vegetables, which are an essential part of a healthy life with roles in ameliorating chronic illnesses and favoring longevity. Nutraceuticals are substances contained in a food or fragment of it influencing health with positive effects on health helping in precenting or treating disorders. We conducted a review illustrating the principal applications of nutraceuticals in autoimmune disorders. Literature reported several studies about exogenous dietary antioxidant supplementation in diverse autoimmune diseases such as rheumatoid arthritis, lupus, diabetes, and multiple sclerosis. In these pathologies, promising results were obtained in some cases. Positive outcomes were generally associated with a reduction of oxidative stress parameters and a boost to antioxidant systems, and sometimes with anti-inflammatory effects. The administration of exogenous substances through food derivates or dietary supplements following scientific standardization was demonstrated to be effective. Further bias-free and extended studies should be conducted that include ever-increasing oxidative stress biomarkers.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Consuelo Micheli ◽  
Alice Parma ◽  
Chiara Tani ◽  
Domenica Di Bello ◽  
Aurora Falaschi ◽  
...  

Abstract Immunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD). In this study, we evaluated oxidative and genome damage in peripheral blood lymphocytes from patients with SLE and UCTD, further classified on the basis of disease activity and the presence/absence of a serological profile. Oxidative damage was evaluated in cell membrane using the fluorescent fatty acid analogue BODIPY 581/591 C11. The percentage of oxidised lymphocytes in both SLE and UCTD patients was higher than in the control group, and the oxidative stress correlated positively with both disease activity and autoantibody profile. The γH2AX focus assay was used to quantify the presence of spontaneous double strand breaks (DSBs), and to assess the abilities of DSBs repair system after T cells were treated with mitomycin C (MMC). Subjects with these autoimmune disorders showed a higher number of γH2AX foci than healthy controls, but no correlation with diseases activity and presence of serological profile was observed. In addition, patients displayed an altered response to MMC-induced DSBs, which led their peripheral cells to greatly increase apoptosis. Taken together our results confirmed an interplay among oxidative stress, DNA damage and impaired DNA repair, which are directly correlated to the aggressiveness and clinical progression of the diseases. We propose the evaluation of these molecular markers to better characterize SLE and UCTD, aiming to improve the treatment plan and the quality of the patients’ life.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
S ALEYNIK ◽  
M ALEYNIK ◽  
C LIEBER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document