scholarly journals Drug addiction as a physical disease: The role of physical dependence and other chronic drug-induced neurophysiological changes in compulsive drug self-administration.

1998 ◽  
Vol 6 (1) ◽  
pp. 107-125 ◽  
Author(s):  
Michael Lyvers
2007 ◽  
Vol 7 ◽  
pp. 194-202 ◽  
Author(s):  
Colleen A. McClung

Drug addiction is a devastating disease that affects millions of individuals worldwide. Through better understanding of the genetic variations that create a vulnerability for addiction and the molecular mechanisms that underlie the progression of addiction, better treatment options can be created for those that suffer from this condition. Recent studies point to a link between abnormal or disrupted circadian rhythms and the development of addiction. In addition, studies suggest a role for specific genes that make up the molecular clock in the regulation of drug sensitivity, sensitization, and reward. The influence of circadian genes and rhythms on drug-induced behaviors may be mediated through the mesolimbic dopaminergic system. This system has long been implicated in the development of addiction, and recent evidence supports a regulatory role for the brain's central pacemaker and circadian gene expression in the regulation of dopaminergic transmission. This review highlights the association between circadian genes and drug addiction, and the possible role of the mesolimbic dopaminergic system in this association.


2021 ◽  
Author(s):  
◽  
Bridget Williams Brox

<p>Drug addiction is a ubiquitous phenomenon worldwide that places tremendous financial and psychological burden on societies, families and the individual. Interestingly, only a small percentage of individuals ( 20%), regardless their drug of choice, go on to develop the compulsive behaviours that define drug addiction. Clinical studies have shown that there is a subset of the population with a genetically determined reduction in the serotonin transporter that may increase vulnerability to developing a variety of psychiatric disorders like depression, anxiety and drug addiction.  To investigate the influence of reduced serotonin transporter function in the laboratory we studied the effects of MDMA (‘ecstasy’) and heroin in a genetically altered animal model: the serotonin transporter (SERT) knockout rat. Homozygous (HOM) animals lack SERT function completely while heterozygous (HET) have about 50% SERT function compared to the wild type (WT). Groups of HOM, HET and WT animals completed MDMA or heroin self-administration experiments. A robust genotype effect emerged for animals self-administering MDMA; facilitation of MDMA self-administration was inversely related to SERT function. HOM animals, without exception, reached acquisition criterion significantly faster than the HET animals; HET animals then showed higher acquisition rates compared to the WT animals. In contrast, there were no differences between the genotypes when animals self-administered heroin. To investigate the driving force behind facilitated MDMA self-administration in animals with reduced SERT function locomotor activity and conditioned taste aversion experiments were undertaken. In contrast to the drug self-administration experiments,MDMA induced hyperactivity was positively related to SERT function. Thus, it was significantly reduced in HOM and HET animals compared to the WT. Again, heroin treatment did not produce differences in locomotion between the genotypes. MDMA induced conditioned taste aversion revealed only a main effect of dose with robust conditioned taste aversion for both drug doses, although a trend indicated that HOM animals may have heightened sensitivity to MDMA. However, heroin treatment failed to produce a conditioned taste aversion effect in any of the groups regardless of dose. Beyond the aforementioned behavioural experiments striatal brain tissue from the animals that had previously self-administered MDMA or heroin was analysed via quantitative reverse transcription polymerase chain reaction; five targets were evaluated to quantify drug induced changes in brain derived neurotrophic factor gene expression (BDNF). Several BDNF isoforms (total BDNF, BDNF III and BDNF IV) were significantly increased in animals that had self-administered MDMA; this effect was true across HOM, HET and WT subjects. Comparatively, animals that had self-administered heroin did not show a difference in BDNF expression compared to untreated control animals.  This suite of experiments provides insight into the influence of a compromised serotonergic system on the development of drug addiction. That is, while reduced SERT function does not appear to augment the addictive properties of drugs like heroin there is reason to suspect that it does confer additional susceptibility to developing addiction to drugs like MDMA, highlighting the hypothesis that different classes of addictive substances act through different neurobiological pathways.</p>


2021 ◽  
Author(s):  
◽  
Bridget Williams Brox

<p>Drug addiction is a ubiquitous phenomenon worldwide that places tremendous financial and psychological burden on societies, families and the individual. Interestingly, only a small percentage of individuals ( 20%), regardless their drug of choice, go on to develop the compulsive behaviours that define drug addiction. Clinical studies have shown that there is a subset of the population with a genetically determined reduction in the serotonin transporter that may increase vulnerability to developing a variety of psychiatric disorders like depression, anxiety and drug addiction.  To investigate the influence of reduced serotonin transporter function in the laboratory we studied the effects of MDMA (‘ecstasy’) and heroin in a genetically altered animal model: the serotonin transporter (SERT) knockout rat. Homozygous (HOM) animals lack SERT function completely while heterozygous (HET) have about 50% SERT function compared to the wild type (WT). Groups of HOM, HET and WT animals completed MDMA or heroin self-administration experiments. A robust genotype effect emerged for animals self-administering MDMA; facilitation of MDMA self-administration was inversely related to SERT function. HOM animals, without exception, reached acquisition criterion significantly faster than the HET animals; HET animals then showed higher acquisition rates compared to the WT animals. In contrast, there were no differences between the genotypes when animals self-administered heroin. To investigate the driving force behind facilitated MDMA self-administration in animals with reduced SERT function locomotor activity and conditioned taste aversion experiments were undertaken. In contrast to the drug self-administration experiments,MDMA induced hyperactivity was positively related to SERT function. Thus, it was significantly reduced in HOM and HET animals compared to the WT. Again, heroin treatment did not produce differences in locomotion between the genotypes. MDMA induced conditioned taste aversion revealed only a main effect of dose with robust conditioned taste aversion for both drug doses, although a trend indicated that HOM animals may have heightened sensitivity to MDMA. However, heroin treatment failed to produce a conditioned taste aversion effect in any of the groups regardless of dose. Beyond the aforementioned behavioural experiments striatal brain tissue from the animals that had previously self-administered MDMA or heroin was analysed via quantitative reverse transcription polymerase chain reaction; five targets were evaluated to quantify drug induced changes in brain derived neurotrophic factor gene expression (BDNF). Several BDNF isoforms (total BDNF, BDNF III and BDNF IV) were significantly increased in animals that had self-administered MDMA; this effect was true across HOM, HET and WT subjects. Comparatively, animals that had self-administered heroin did not show a difference in BDNF expression compared to untreated control animals.  This suite of experiments provides insight into the influence of a compromised serotonergic system on the development of drug addiction. That is, while reduced SERT function does not appear to augment the addictive properties of drugs like heroin there is reason to suspect that it does confer additional susceptibility to developing addiction to drugs like MDMA, highlighting the hypothesis that different classes of addictive substances act through different neurobiological pathways.</p>


Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Joachim Gerich ◽  
Roland Lehner

Although ego-centered network data provide information that is limited in various ways as compared with full network data, an ego-centered design can be used without the need for a priori and researcher-defined network borders. Moreover, ego-centered network data can be obtained with traditional survey methods. However, due to the dynamic structure of the questionnaires involved, a great effort is required on the part of either respondents (with self-administration) or interviewers (with face-to-face interviews). As an alternative, we will show the advantages of using CASI (computer-assisted self-administered interview) methods for the collection of ego-centered network data as applied in a study on the role of social networks in substance use among college students.


Author(s):  
Trevor Robbins

A conceptual analysis of the impulsivity construct in behavioral and neurobiological terms is followed by an analysis of its causal role in certain forms of drug addiction in both human and animal studies. The main focus of this chapter is on a rat model of impulsivity based on premature responding in the five-choice serial reaction time task and a more detailed characterization of this phenotype in neurobehavioral, neurochemical, and genetic terms. Evidence is surveyed that high impulsivity on this task is associated with the escalation subsequently of cocaine self-administration behavior and also with a tendency toward compulsive cocaine seeking. Novelty reactivity, by contrast, is associated with the enhanced acquisition of self-administration, but not with the escalation of intravenous self-administration of cocaine or the development of compulsive behavior associated with cocaine seeking. These results indicate that the vulnerability to stimulant addiction may depend on different factors, as expressed through distinct presumed endophenotypes. These observations help us further to dissociate various aspects of the impulsivity construct in neural as well as behavioral terms.


2020 ◽  
Vol 8 ◽  
pp. 2050313X2091002 ◽  
Author(s):  
Umut Selamet ◽  
Ramy M Hanna ◽  
Anthony Sisk ◽  
Lama Abdelnour ◽  
Lena Ghobry ◽  
...  

Drug-induced lupus erythematosus has features distinct from primary systemic lupus erythematosus. It can occur with a wide variety of agents that result in the generation of anti-histone or other types of antibodies. Systemic manifestations of drug-induced systemic lupus erythematosus may include renal dysfunction due to circulating immune complexes or due to other immune reactions to the culprit medication(s). Acute interstitial nephritis occurs due to DNA–drug or protein–drug complexes that trigger an allergic immune response. We report a patient who developed acute kidney injury, rash, and drug-induced systemic lupus diagnosed by serologies after starting chlorthalidone and amiodarone. A renal biopsy showed acute interstitial nephritis and not lupus-induced glomerulonephritis. It is important to note that systemic lupus erythematosus and acute interstitial nephritis can occur together, and this report highlights the role of the kidney biopsy in ascertaining the pathological diagnosis and outlining therapy in drug-induced lupus erythematosus.


Sign in / Sign up

Export Citation Format

Share Document