central pacemaker
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 3)

Glia ◽  
2021 ◽  
Author(s):  
Mariana Astiz ◽  
Lina Maria Delgado‐García ◽  
Laura López‐Mascaraque
Keyword(s):  

2021 ◽  
Author(s):  
Jeffrey Swan ◽  
Colby Sandate ◽  
Archana Chavan ◽  
Alfred Freeberg ◽  
Diana Etwaru ◽  
...  

The AAA+ protein KaiC is the central pacemaker for cyanobacterial circadian rhythms. Composed of two hexameric rings with tightly coupled activities, KaiC undergoes changes in autophosphorylation on its C-terminal (CII) domain that restrict binding of of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryo-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding to CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together these studies reveal how daily changes in KaiC phosphorylation regulate cyanobacterial circadian rhythms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yannuo Li ◽  
Ioannis P. Androulakis

AbstractThe suprachiasmatic nucleus (SCN) functions as the central pacemaker aligning physiological and behavioral oscillations to day/night (activity/inactivity) transitions. The light signal entrains the molecular clock of the photo-sensitive ventrolateral (VL) core of the SCN which in turn entrains the dorsomedial (DM) shell via the neurotransmitter vasoactive intestinal polypeptide (VIP). The shell converts the VIP rhythmic signals to circadian oscillations of arginine vasopressin (AVP), which eventually act as a neurotransmitter signal entraining the hypothalamic–pituitary–adrenal (HPA) axis, leading to robust circadian secretion of glucocorticoids. In this work, we discuss a semi-mechanistic mathematical model that reflects the essential hierarchical structure of the photic signal transduction from the SCN to the HPA axis. By incorporating the interactions across the core, the shell, and the HPA axis, we investigate how these coupled systems synchronize leading to robust circadian oscillations. Our model predicts the existence of personalized synchronization strategies that enable the maintenance of homeostatic rhythms while allowing for differential responses to transient and permanent light schedule changes. We simulated different behavioral situations leading to perturbed rhythmicity, performed a detailed computational analysis of the dynamic response of the system under varying light schedules, and determined that (1) significant interindividual diversity and flexibility characterize adaptation to varying light schedules; (2) an individual’s tolerances to jet lag and alternating shift work are positively correlated, while the tolerances to jet lag and transient shift work are negatively correlated, which indicates trade-offs in an individual’s ability to maintain physiological rhythmicity; (3) weak light sensitivity leads to the reduction of circadian flexibility, implying that light therapy can be a potential approach to address shift work and jet lag related disorders. Finally, we developed a map of the impact of the synchronization within the SCN and between the SCN and the HPA axis as it relates to the emergence of circadian flexibility.


2021 ◽  
pp. JN-RM-0397-21
Author(s):  
Sofía Polcowñuk ◽  
Taishi Yoshii ◽  
M. Fernanda Ceriani

2021 ◽  
Vol 12 ◽  
Author(s):  
Edouard Jaumouillé ◽  
Rafael Koch ◽  
Emi Nagoshi

Studies of circadian locomotor rhythms in Drosophila melanogaster gave evidence to the preceding theoretical predictions on circadian rhythms. The molecular oscillator in flies, as in virtually all organisms, operates using transcriptional-translational feedback loops together with intricate post-transcriptional processes. Approximately150 pacemaker neurons, each equipped with a molecular oscillator, form a circuit that functions as the central pacemaker for locomotor rhythms. Input and output pathways to and from the pacemaker circuit are dissected to the level of individual neurons. Pacemaker neurons consist of functionally diverse subclasses, including those designated as the Morning/Master (M)-oscillator essential for driving free-running locomotor rhythms in constant darkness and the Evening (E)-oscillator that drives evening activity. However, accumulating evidence challenges this dual-oscillator model for the circadian circuit organization and propose the view that multiple oscillators are coordinated through network interactions. Here we attempt to provide further evidence to the revised model of the circadian network. We demonstrate that the disruption of molecular clocks or neural output of the M-oscillator during adulthood dampens free-running behavior surprisingly slowly, whereas the disruption of both functions results in an immediate arrhythmia. Therefore, clocks and neural communication of the M-oscillator act additively to sustain rhythmic locomotor output. This phenomenon also suggests that M-oscillator can be a pacemaker or a downstream path that passively receives rhythmic inputs from another pacemaker and convey output signals. Our results support the distributed network model and highlight the remarkable resilience of the Drosophila circadian pacemaker circuit, which can alter its topology to maintain locomotor rhythms.


Endocrinology ◽  
2021 ◽  
Author(s):  
Joseph R Knoedler ◽  
Cristina Sáenz de Miera ◽  
Arasakumar Subramani ◽  
Robert J Denver

Abstract The clock protein period 1 (PER1) is a central component of the core transcription-translation feedback loop governing cell-autonomous circadian rhythms in animals. Transcription of Per1 is directly regulated by the glucocorticoid (GC) receptor (GR), and Per1 mRNA is induced by stressors or injection of GC. Circulating GCs may synchronize peripheral clocks with the central pacemaker located in the suprachiasmatic nucleus of the brain. Krüppel-like factor 9 (KLF9) is a zinc finger transcription factor that, like Per1, is directly regulated by liganded GR, and it associates in chromatin at clock- and clock-output genes, including at Per1. We hypothesized that KLF9 modulates stressor-dependent Per1 transcription. We exposed wild type (WT) and Klf9 null mice (Klf9  -/-) of both sexes to 1 hr restraint stress, which caused similar 2-2.5 fold increases in plasma corticosterone (B) in each genotype and sex. While WT mice of both sexes showed a 2-fold increase in liver Per1 mRNA level after restraint stress, this response was absent in Klf9  -/- mice. However, injection of B in WT and Klf9  -/- mice induced similar increases in Per1 mRNA. Our findings support that an intact Klf9 gene is required for liver Per1 mRNA responses to an acute stressor, but a possible role for GCs in this response requires further investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tomaz Martini ◽  
Jürgen A. Ripperger ◽  
Rohit Chavan ◽  
Michael Stumpe ◽  
Citlalli Netzahualcoyotzi ◽  
...  

Daily recurring events can be predicted by animals based on their internal circadian timing system. However, independently from the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system in mammals, restriction of food access to a particular time of day elicits food anticipatory activity (FAA). This suggests an involvement of other central and/or peripheral clocks as well as metabolic signals in this behavior. One of the metabolic signals that is important for FAA under combined caloric and temporal food restriction is β-hydroxybutyrate (βOHB). Here we show that the monocarboxylate transporter 1 (Mct1), which transports ketone bodies such as βOHB across membranes of various cell types, is involved in FAA. In particular, we show that lack of the Mct1 gene in the liver, but not in neuronal or glial cells, reduces FAA in mice. This is associated with a reduction of βOHB levels in the blood. Our observations suggest an important role of ketone bodies and its transporter Mct1 in FAA under caloric and temporal food restriction.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mark S. Rea ◽  
Rohan Nagare ◽  
Mariana G. Figueiro

The retina is a complex, but well-organized neural structure that converts optical radiation into neural signals that convey photic information to a wide variety of brain structures. The present paper is concerned with the neural circuits underlying phototransduction for the central pacemaker of the human circadian system. The proposed neural framework adheres to orthodox retinal neuroanatomy and neurophysiology. Several postulated mechanisms are also offered to account for the high threshold and for the subadditive response to polychromatic light exhibited by the human circadian phototransduction circuit. A companion paper, modeling circadian phototransduction: Quantitative predictions of psychophysical data, provides a computational model for predicting psychophysical data associated with nocturnal melatonin suppression while staying within the constraints of the neurophysiology and neuroanatomy offered here.


2020 ◽  
Vol 2 (4) ◽  
pp. 523-535
Author(s):  
Adrienne C. Loewke ◽  
Alex Garrett ◽  
Athreya Steiger ◽  
Nathan Fisher ◽  
H. Craig Heller ◽  
...  

This study examined whether theta oscillations were compromised by the type of circadian disruption that impairs hippocampal-dependent memory processes. In prior studies on Siberian hamsters, we developed a one-time light treatment that eliminated circadian timing in the central pacemaker, the suprachiasmatic nucleus (SCN). These arrhythmic animals had impaired hippocampal-dependent memory whereas animals made arrhythmic with SCN lesions did not. The current study examined whether theta oscillations are compromised by the same light treatment that produced memory impairments in these animals. We found that both methods of inducing circadian-arrhythmia shortened theta episodes in the EEG by nearly 50%. SCN-lesioned animals, however, exhibited a 3-fold increase in the number of theta episodes and more than doubled the total time that theta dominated the EEG compared to SCN-intact circadian-arrhythmic animals. Video tracking showed that changes in theta were paralleled by similar changes in exploration behavior. These results suggest that the circadian-arrhythmic SCN interferes with hippocampal memory encoding by fragmenting theta oscillations. SCN-lesioned animals can, however, compensate for the shortened theta episodes by increasing their frequency. Implications for rhythm coherence and theta sequence models of memory formation are discussed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Fenske ◽  
Konstantin Hennis ◽  
René D. Rötzer ◽  
Verena F. Brox ◽  
Elvir Becirovic ◽  
...  

Abstract It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Sign in / Sign up

Export Citation Format

Share Document