Relative muscle loading and endurance.

Author(s):  
Lee S. Caldwell
Keyword(s):  
Author(s):  
Benjamin C. Gadomski ◽  
John Rasmussen ◽  
Christian M. Puttlitz

The human spine experiences complex loading in vivo; however, simplifications to these loading conditions are commonly made in computational and experimental protocols. Pure moments are often used in cadaveric preparations to replicate in vivo loading conditions, and previous studies have shown this method adequately predicts range of motion behavior (1, 2). It is unclear what effect pure moment loading has on the tissue-level internal mechanical parameters such as stresses in the annulus fibrosus and facet contact parameters. Recent advances in musculoskeletal modeling have elucidated previously unknown quantities of the musculature recruitment patterns such as times, forces, and directions. The advancements are especially relevant in cases of surgical intervention because the spinal musculature has been reported to play a critical role in providing additional stability to the spine when defects such as discectomy and nucleotomy are involved (2). Thus, the aim of the study was to determine the importance of computational loading conditions on the resultant global ranges of motion, as well as the tissue-level predictions of annulus fibrosus stresses, and facet contact pressures, forces, and areas.


2006 ◽  
Vol 21 (1) ◽  
pp. 3-9
Author(s):  
B G Wristen ◽  
M C Jung ◽  
A K G Wismer ◽  
M S Hallbeck

This pilot study examined whether the use of a 7/8 keyboard contributed to the physical ease of small-handed pianists as compared with the conventional piano keyboard. A secondary research question focused on the progression of physical ease in pianists making the transition from one keyboard to the other. For the purposes of this study, a hand span of 8 inches or less was used to define a “small-handed” pianist. The goal was to measure muscle loading and hand span during performance of a specified musical excerpt. For data collection, each of the two participants was connected to an 8-channel electromyography system via surface electrodes, which were attached to the upper back/shoulder, parts of the hand and arm, and masseter muscle of the jaw. Subjects also were fitted with electrogoniometers to capture how the span from the first metacarpophalangeal (MCP) joint to the fifth MCP joint moves according to performance demands, as well as wrist flexion and extension and radial and ulnar deviation. We found that small-handed pianists preferred the smaller keyboard and were able to transition between it and the conventional keyboard. The maximal angle of hand span while playing a difficult piece was about 5º smaller radially and 10º smaller ulnarly for the 7/8 keyboard, leading to perceived ease and better performance as rated by the pianists.


2001 ◽  
Vol 90 (4) ◽  
pp. 1407-1414 ◽  
Author(s):  
Heather K. Smith ◽  
Linda Maxwell ◽  
Carol D. Rodgers ◽  
Nancy H. McKee ◽  
Michael J. Plyley

The effects of increased functional loading on early cellular regenerative events after exercise-induced injury in adult skeletal muscle were examined with the use of in vivo labeling of replicating myofiber nuclei and immunocyto- and histochemical techniques. Satellite cell proliferation in the soleus (Sol) of nonexercised rats (0.4 ± 0.2% of fibers) was unchanged after an initial bout of declined treadmill exercise but was elevated after two (1.0 ± 0.2%, P ≤ 0.01), but not four or seven, daily bouts of the same task. Myonuclei produced over the 7-day period comprised 0.9–1.9% of myonuclei in isolated fibers of Sol, tibialis anterior, and vastus intermedius of nonexercised rats. The accretion of new myonuclei was enhanced ( P ≤ 0.05) in Sol and vastus intermedius by the initial exercise followed by normal activity (to 3.1–3.4% of myonuclei) and more so by continued daily exercise (4.2–5.3%). Observed coincident with a lower incidence of histological fiber injury and unchanged fiber diameter and myonuclei per millimeter, the greater new myonuclear accretion induced by continued muscle loading may contribute to an enhanced fiber repair and regeneration after exercise-induced injury.


2009 ◽  
Vol 18 (5) ◽  
pp. 773-778 ◽  
Author(s):  
John H. Udall ◽  
Michael J. Fitzpatrick ◽  
Michelle H. McGarry ◽  
Thu-Ba Leba ◽  
Thay Q. Lee

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97375 ◽  
Author(s):  
Alexander M. Tatara ◽  
Justin H. Lipner ◽  
Rosalina Das ◽  
H. Mike Kim ◽  
Nikunj Patel ◽  
...  
Keyword(s):  

2006 ◽  
Vol 100 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Kimberly A. Huey

Functional overload (FO) is a powerful inducer of muscle hypertrophy and both oxidative and mechanical stress in muscle fibers. Heat shock protein 25 (HSP25) may protect against both of these stressors, and its expression can be regulated by changes in muscle loading and activation. The primary purpose of the present study was to test the hypothesis that chronic FO increases HSP25 expression and phosphorylation (pHSP25) in hypertrophying rat hindlimb muscle. HSP25 and pHSP25 levels were quantified in soluble and insoluble fractions of the soleus and plantaris to determine whether 3 or 7 days of FO increase translocation of HSP25 and/or pHSP25 to the insoluble fraction. p38 protein and phosphorylation (p-p38) was measured to determine its association with changes in pHSP25. HSP25 mRNA showed time-dependent increases in both the soleus and plantaris with FO. Three or seven days of FO increased HSP25 and pHSP25 in the soluble fraction in both muscles, with a greater response in the plantaris. In the insoluble fraction, HSP25 was increased after 3 or 7 days in both muscles, whereas pHSP25 was only increased in the 7-day plantaris. p38 and p-p38 increased in the plantaris at both time points. In the soleus, p-p38 only increased after 7 days. These results show that FO is associated with changes in HSP25 expression and phosphorylation and suggest its role in the remodeling that occurs during muscle hypertrophy. Increases in HSP25 in the insoluble fraction suggest that it may help to stabilize actin and/or other cytoskeletal proteins during the stress of muscle remodeling.


2021 ◽  
Vol 130 (4) ◽  
pp. 1043-1051
Author(s):  
Sabah N. Rezvani ◽  
Anne E. C. Nichols ◽  
Robert W. Grange ◽  
Linda A. Dahlgren ◽  
P. Gunnar Brolinson ◽  
...  

We introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This innovative model allows for application of muscle loading “doses,” coupled with ankle dorsiflexion and plantarflexion, inspired by human loading clinical treatment. Our model facilitates future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.


2019 ◽  
Vol 85 ◽  
pp. 37-42 ◽  
Author(s):  
Norman Stutzig ◽  
David Ryan ◽  
James M. Wakeling ◽  
Tobias Siebert
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cristiano Alessandro ◽  
Amirehsan Sarabadani Tafreshi ◽  
Robert Riener

2012 ◽  
Vol 27 (3) ◽  
pp. 292-298 ◽  
Author(s):  
Monika Horisberger ◽  
Rafael Fortuna ◽  
Timothy R. Leonard ◽  
Victor Valderrabano ◽  
Walter Herzog

Sign in / Sign up

Export Citation Format

Share Document