Influence of Temperature on the Isometric Myograms of Cross Innervated Mammalian Fast Twitch and Slow Twitch Skeletal Muscles

Nature ◽  
1968 ◽  
Vol 218 (5144) ◽  
pp. 877-878 ◽  
Author(s):  
A. J. BULLER ◽  
K. W. RANATUNGA ◽  
JANET SMITH
1996 ◽  
Vol 271 (6) ◽  
pp. E1061-E1066 ◽  
Author(s):  
D. Meynial-Denis ◽  
M. Mignon ◽  
A. Miri ◽  
J. Imbert ◽  
E. Aurousseau ◽  
...  

Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamine synthesis in muscle. We hypothesized that the glucocorticoid induction of GS could be altered in aged rats, because alterations in the responsiveness of some genes to glucocorticoids were reported in aging. We compared the glucocorticoid-induced GS in fast-twitch and slow-twitch skeletal muscles (tibialis anterior and soleus, respectively) and heart from adult (age 6-8 mo) and aged (age 22 mo) female rats. All animals received dexamethasone (Dex) in their drinking water (0.77 +/- 0.10 and 0.80 +/- 0.08 mg/day per adult and aged rat, respectively) for 5 days. Dex caused an increase in both GS activity and GS mRNA in fast-twitch and slow-twitch skeletal muscles from adult and aged rats. In contrast, Dex increased GS activity in heart of adult rats, without any concomitant change in GS mRNA levels. Furthermore, Dex did not affect GS activity in aged heart. Thus the responsiveness of GS to an excess of glucocorticoids is preserved in skeletal muscle but not in heart from aged animals.


1983 ◽  
Vol 245 (1) ◽  
pp. R25-R31 ◽  
Author(s):  
G. Sjogaard

Sodium, potassium, and magnesium were analyzed in human slow-twitch (ST) and fast-twitch (FT) skeletal muscles. In contrast to other species, no relation was found between fiber composition and electrolyte distribution. In soleus (S), vastus lateralis (VL), and triceps brachii (TB) the overall mean values for 6 men and 6 women were 44 mmol K/100 g dry wt and 11 mmol Na/100 g dry wt; the intracellular concentrations were 161 mmol K/l and 26 mmol Na/l with no differences between the muscles. Analysis of fragments of single ST and FT fibers from each of the muscles also showed no difference between the fiber types in Na and K content. Small differences were seen between the muscles with regard to Mg, but these were not related to fiber composition compared with other species. During exercise to exhaustion (3 bouts of bicycling for 3 min at 325-395 W, 6 men) the extracellular electrolyte concentrations for Na, K, and Mg increased from 134 to 140, 4.5 to 5.8, and 0.75 to 0.87 mmol/l, respectively (P less than 0.05). In VL Na content increased from 9.8 to 16.5 mmol/100 g dry wt, while intracellular [Na] remained constant. In contrast, intracellular [K] decreased from 161 to 141 mmol/l (P less than 0.05). No such changes occurred in TB. In concert with other studies the present changes in electrolytes in the working muscles indicate that muscle fatigue may be related to changes at the muscle fiber membrane.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pabodha Hettige ◽  
Uzma Tahir ◽  
Kiisa C. Nishikawa ◽  
Matthew J. Gage

Abstract Background Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. Results EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. Conclusions The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


1987 ◽  
Vol 252 (4) ◽  
pp. C450-C453 ◽  
Author(s):  
L. E. Underwood ◽  
R. S. Williams

We have used blot hybridization techniques and a specific anti-sense RNA probe to determine whether variation in myoglobin gene expression among mammalian striated muscles is attributable to pretranslational regulatory events. We observed that myoglobin mRNA was expressed to approximately 10- and 5-fold greater levels, respectively, in cardiac and soleus (slow-twitch, oxidative, skeletal) muscles of adult rabbits than in tibialis anterior (fast-twitch, glycolytic, skeletal) muscles. Furthermore, when oxidative capacity of tibialis anterior muscles was increased by 21 days of indirect electrical stimulation, a model of exercise conditioning, myoglobin mRNA content increased approximately 15-fold. We conclude that pretranslational mechanisms are important in regulation of myoglobin gene expression in mammalian muscles.


2000 ◽  
Vol 88 (3) ◽  
pp. 904-916 ◽  
Author(s):  
G. R. Adams ◽  
F. Haddad ◽  
S. A. McCue ◽  
P. W. Bodell ◽  
M. Zeng ◽  
...  

Both slow-twitch and fast-twitch muscles are undifferentiated after birth as to their contractile protein phenotype. Thus we examined the separate and combined effects of spaceflight (SF) and thyroid deficiency (TD) on myosin heavy chain (MHC) gene expression (protein and mRNA) in muscles of neonatal rats (7 and 14 days of age at launch) exposed to SF for 16 days. Spaceflight markedly reduced expression of the slow, type I MHC gene by ∼55%, whereas it augmented expression of the fast IIx and IIb MHCs in antigravity skeletal muscles. In fast muscles, SF caused subtle increases in the fast IIb MHC relative to the other adult MHCs. In contrast, TD prevented the normal expression of the fast MHC phenotype, particularly the IIb MHC, whereas TD maintained expression of the embryonic/neonatal MHC isoforms; this response occurred independently of gravity. Collectively, these results suggest that normal expression of the type I MHC gene requires signals associated with weight-bearing activity, whereas normal expression of the IIb MHC requires an intact thyroid state acting independently of the weight-bearing activities typically encountered during neonatal development of laboratory rodents. Finally, MHC expression in developing muscles is chiefly regulated by pretranslational processes based on the tight relationship between the MHC protein and mRNA data.


2016 ◽  
Vol 37 (6) ◽  
pp. 225-233 ◽  
Author(s):  
Giorgia Valle ◽  
Barbara Vergani ◽  
Roberta Sacchetto ◽  
Carlo Reggiani ◽  
Edith De Rosa ◽  
...  

Author(s):  
Jonas Hokser Olesen ◽  
Jon Hagen Herskind ◽  
Katja Krustrup Pedersen ◽  
Kristian Overgaard

Purpose: Moderate elevations of [K+]o occur during exercise and have been shown to potentiate force during contractions elicited with subtetanic frequencies. Here, we investigated whether lactic acid (reduced chloride conductance), β2-adrenoceptor activation, and increased temperature would influence the potentiating effect of potassium in slow- and fast-twitch muscle. Methods: Isometric contractions were elicited by electrical stimulation at various frequencies in isolated rat soleus and extensor digitorum longus (EDL) muscles incubated at normal (4 mM) or elevated K+, in combination with either salbutamol (5 μM), lactic acid (18.1 mM), 9-AC (25 μM) or increased temperature (30 to 35°C). Results: Elevating [K+] from 4 mM to 7 mM (soleus) and 10 mM (EDL) potentiated isometric twitch and subtetanic force while slightly reducing tetanic. In EDL, salbutamol further augmented twitch force (+27±3 %, P<0.001) and subtetanic force (+22±4 %, P<0.001). In contrast, salbutamol reduced subtetanic force (-28±6 %, P<0.001) in soleus muscles. Lactic acid and 9-AC had no significant effects on isometric force of muscles already exposed to moderate elevations of [K+]o. The potentiating effect of elevated [K+]o was still well maintained at 35°C. Conclusion: Addition of salbutamol exerts a further force-potentiating effect in fast-twitch but not in slow-twitch muscles already potentiated by moderately elevated [K+]o, whilst neither lactic acid, 9-AC nor increased temperature exerts any further augmentation. However, the potentiating effect of elevated [K+]o was still maintained in the presence of these, thus emphasizing the positive influence of moderately elevated [K+]o for contractile performance during exercise.


2004 ◽  
Vol 287 (2) ◽  
pp. E305-E309 ◽  
Author(s):  
David C. Wright ◽  
Paige C. Geiger ◽  
Mark J. Rheinheimer ◽  
Dong Ho Han ◽  
John O. Holloszy

Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an ∼3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport ∼50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by ∼50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document