Physical Sciences: Two New Point Sources of High Energy Cosmic Gamma Rays

Nature ◽  
1971 ◽  
Vol 231 (5302) ◽  
pp. 372-375 ◽  
Author(s):  
G. M. FRYE ◽  
P. A. ALBATS ◽  
A. D. ZYCH ◽  
J. A. STAIB ◽  
V. D. HOPPER ◽  
...  
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


2019 ◽  
Vol 207 ◽  
pp. 03004 ◽  
Author(s):  
D. D. Dzhappuev ◽  
I. M. Dzaparova ◽  
E. A. Gorbacheva ◽  
I. S. Karpikov ◽  
M. M. Khadzhiev ◽  
...  

Early results of the search for Eγ > 1 PeV cosmic photons from point sources with the data of Carpet–2, an air-shower array equipped with a 175 m2 muon detector, are presented. They include 95% CL upper limits on PeV photon fluxes from stacked directions of high-energy IceCube neutrino events and from four predefined sources, Crab, Cyg X-3, Mrk 421 and Mrk 501. An insignificant excess of events from Mrk 421 will be further monitored. Prospects of the use of the upgraded installation, Carpet–3 (410 m2 muon detector), scheduled to start data taking in 2019, for searches of Eγ > 100 TeV photons, are briefly discussed.


2005 ◽  
Vol 20 (29) ◽  
pp. 6962-6964
Author(s):  
◽  
P. LE COULTRE

A sky survey for flaring point sources emitting high energy gamma rays has been performed with the L 3+ C underground muon spectrometer at LEP, CERN. Data were collected from mid July to October 1999 and from April to November 2000. No signal excesses in any direction have been found with muons above 20, 30, 50 and 100 GeV within one day and longer time windows. The steady muon flux sensitivity is of the order of a few times 10-9 cm-2 s-1 for muon energies above 20 GeV, and between 2 × 10-11 and 5 × 10-10 cm -2 s -1 for muon energies above 20 GeV depending on the source position.


1968 ◽  
Vol 46 (10) ◽  
pp. S425-S426 ◽  
Author(s):  
J. P. Delvaille ◽  
P. Albats ◽  
K. I. Greisen ◽  
H. B. Ögelman

A balloon-borne photographic spark chamber was flown at a pressure of 10 g cm−2 on 14 April 1966 from Holloman A.F.B., New Mexico. Upper limits were obtained on gamma-ray fluxes above 1 GeV from various discrete sources including Cyg A, Cas A, and the Crab nebula. Also a measurement was made on the average photon flux above 1 GeV from a portion of the galactic disk.


2019 ◽  
Vol 210 ◽  
pp. 06007
Author(s):  
Olivier Martineau-Huynh

The Giant Array for Neutrino Detection (GRAND) is a proposal for a giant observatory of ultra-high energy cosmic particles (neutrinos, cosmic rays and gamma rays). It will be composed of twenty subarrays of 10 000 antennas each, totaling a detection area of 200 000 km2. GRAND will reach unprecedented sensitivity to neutrinos allowing to detect cosmogenic neutrinos while its sub-degree angular resolution will also make it possible to hunt for point sources and possibly start neutrino astronomy. Combined with its gigantic exposure to ultra-high energy cosmic rays and gamma rays, GRAND will be a powerful tool to solve the century-long mistery of the nature and origin of the particles with highest energy in the Universe. On the path to GRAND, the GRANDProto300 experiment will be deployed in 2020 over a total area of 200 km2. It primarly aims at validating the detection concept of GRAND, but also proposes a rich science program centered on a precise and complete measurement of the air showers initiated by cosmic rays with energies between 1016.5 and 1018 eV, a range where we expect to observe the transition between the Galactic and extra-galactic origin of cosmic rays.


1968 ◽  
Vol 46 (10) ◽  
pp. S81-S83 ◽  
Author(s):  
Hugh S. Tornabene ◽  
Frank J. Cusimano

A new installation for the detection of Cerenkov light from extensive air showers is being used to search for point sources of high-energy neutral cosmic rays. By measuring the relative arrival times of the Cerenkov light front at four well-spaced independent light detectors, an area of sky is examined simultaneously, with angular resolution near 1.5° half-width at half-maximum and energy threshold to gamma rays near 2 × 1012 eV. Results from preliminary scans of 3C144, 3C157, 3C219, 3C274, 3C295, and the constellation of Leo near declination 20° and right ascension 1100 h are given.


1964 ◽  
Vol 83 (5) ◽  
pp. 3-34 ◽  
Author(s):  
F.R. Arutyunyan ◽  
V.A. Tumanyan

2021 ◽  
Author(s):  
Tiebin Yang ◽  
Feng Li ◽  
Rongkun Zheng

Perovskite halides hold great potential for high-energy radiation detection. Recent advancements in detecting alpha-, beta-, X-, and gamma-rays by perovskite halides are reviewed and an outlook on the device performance optimization is provided.


2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


Sign in / Sign up

Export Citation Format

Share Document